Thrust Bearing Influence on the Stability Analysis of Turbocharger Rotor-Bearing System

Author(s):  
Rajasekhara Reddy Mutra ◽  
J. Srinivas ◽  
Devender Singh
2011 ◽  
Vol 2-3 ◽  
pp. 728-732
Author(s):  
Chao Feng Li ◽  
Guang Chao Liu ◽  
Qin Liang Li ◽  
Bang Chun Wen

Multiple freedom degrees model of rotor-bearing system taking many factors into account is established, the Newmark-β and shooting method are combined during the stability analysis of periodic motion in such system. The paper focused on the influence law of two eccentric phase difference on the instability speed of rotor-bearing system. The results have shown that the instability speed rises constantly with the eccentric phase difference angle increasing in small eccentricity system. When the two unbalance be in opposite direction, the system reached its maximum instability speed. However, the unstable bifurcation generates mutation phenomenon for large eccentricity system with the eccentric phase difference angle increasing. In summary, the larger initial phase angle can inhibit system instability partly. The conclusions have provided a theoretical reference for vibration control and stability design of the more complex rotor-bearing system.


2020 ◽  
Vol 151 ◽  
pp. 106356 ◽  
Author(s):  
Fangxu Sun ◽  
Xianbiao Zhang ◽  
Yingsan Wei ◽  
Xing Wang ◽  
Dong Wang

2011 ◽  
Vol 148-149 ◽  
pp. 3-6 ◽  
Author(s):  
Chao Feng Li ◽  
Qin Liang Li ◽  
Jie Liu ◽  
Bang Chun Wen

Multi-DOF model of double-disc rotor-bearing system taking crack and oil film support into account is established, and the continuation shooting method combined with Newmark is also applied to stability analysis of continuous system. This paper mainly studied the variation law of five parameters domain in crack depth and location, then a number of conclusions are found: first, it’s feasible to study the stability of nonlinear rotor-bearing system with crack faults using FEM; secondly, the crack depth and location has a certain impact on instability speed, but the impact is not great and owns its certain law. As the crack depth and location is getting close to the middle position of rotor, due to its impact on the oil film support, the instability speed of system increases. This method and results in this paper provides a theoretical reference for stability analysis and vibration control in more complex relevant rotor-bearing system with crack fault.


2013 ◽  
Vol 483 ◽  
pp. 285-288 ◽  
Author(s):  
Yue Gang Luo ◽  
Song He Zhang ◽  
Bin Wu ◽  
Hong Ying Hu

The dynamic model of nonlinear stiffness rotor-bearing system with pedestal looseness fault was set up, taking the linearity and cube item as the physics nonlinear factors. The periodic solution of system was analyzed by continuation-shooting algorithm for periodic solution of nonlinear non-autonomous system, and the stability of system periodic motion and unsteady law are discussed by Floquet theory. The unstable form of it is Hopf bifurcation. In the region of critical rotate speed, the main motion of the system is periodic-4; and it of ultra critical rotate speed, the main motion of the system is periodic-3 and chaotic motion. The conclusions provide theoretic basis reference for the fault diagnosis of the rotor-bearing system.


2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


Author(s):  
H. R. Born

This paper presents an overview of the development of a reliable bearing system for a new line of small turbochargers where the bearing system has to be compatible with a new compressor and turbine design. The first part demonstrates how the increased weight of the turbine, due to a 40 % increase in flow capacity, influences the dynamic stability of the rotor-bearing system. The second part shows how stability can be improved by optimizing important floating ring parameters and by applying different bearing designs, such as profiled bore bearings supported on squeeze film dampers. Test results and stability analyses are included as well as the criteria which led to the decision to choose a squeeze film backed symmetrical 3-lobe bearing for this new turbocharger design.


Sign in / Sign up

Export Citation Format

Share Document