Cascaded H-Bridge Based Multilevel Inverter for Power Quality Issues

Author(s):  
Arvind Yadav ◽  
Subhash Chandra
Author(s):  
Gunjan Varshney ◽  
Durg S. Chauhan ◽  
Madhukar P. Dave ◽  
Nitin

Background: In modern electrical power distribution systems, Power Quality has become an important concern due to the escalating use of automatic, microprocessor and microcontroller based end user applications. Methods: In this paper, power quality improvement has done using Photovoltaic based Distribution Static Compensator (PV-DSTATCOM). Complete simulation modelling and control of Photovoltaic based Distribution Static Compensator have been provided in the presented paper. In this configuration, DSTATCOM is fed by solar photovoltaic array and PV module is also helpful to maintain the DC link voltage. The switching of PV-STATCOM is controlled by Unit template based control theory. Results: The performance of PV-DSTATCOM has been evaluated for Unity Power Factor (UPF) and AC Voltage Control (ACVC) modes. Here, for studying the power quality issues three-phase distribution system is considered and results have been verified through simulation based on MATLAB software. Conclusion: Different power quality issues and their improvement are studied and presented here for harmonic reduction, DC voltage regulation and power factor correction.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Tomasz Tarasiuk ◽  
Shantha Gamini Jayasinghe ◽  
Mariusz Gorniak ◽  
Andrzej Pilat ◽  
Viknash Shagar ◽  
...  
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 304
Author(s):  
Sakthivel Ganesan ◽  
Prince Winston David ◽  
Praveen Kumar Balachandran ◽  
Devakirubakaran Samithas

Since most of our industries use induction motors, it is essential to develop condition monitoring systems. Nowadays, industries have power quality issues such as sag, swell, harmonics, and transients. Thus, a condition monitoring system should have the ability to detect various faults, even in the presence of power quality issues. Most of the fault diagnosis and condition monitoring methods proposed earlier misidentified the faults and caused the condition monitoring system to fail because of misclassification due to power quality. The proposed method uses power quality data along with starting current data to identify the broken rotor bar and bearing fault in induction motors. The discrete wavelet transform (DWT) is used to decompose the current waveform, and then different features such as mean, standard deviation, entropy, and norm are calculated. The neural network (NN) classifier is used for classifying the faults and for analyzing the classification accuracy for various cases. The classification accuracy is 96.7% while considering power quality issues, whereas in a typical case, it is 93.3%. The proposed methodology is suitable for hardware implementation, which merges mean, standard deviation, entropy, and norm with the consideration of power quality issues, and the trained NN proves stable in the detection of the rotor and bearing faults.


2021 ◽  
Vol 13 (2) ◽  
pp. 505
Author(s):  
Sumaya Jahan ◽  
Shuvra Prokash Biswas ◽  
Md. Kamal Hosain ◽  
Md. Rabiul Islam ◽  
Safa Haq ◽  
...  

The use of different control techniques has become very popular for controlling the performance of grid-connected photovoltaic (PV) systems. Although the proportional-integral (PI) control technique is very popular, there are some difficulties such as less stability, slow dynamic response, low reference tracking capability, and lower output power quality in solar PV applications. In this paper, a robust, fast, and dynamic proportional-integral resonance controller with a harmonic and lead compensator (PIR + HC + LC) is proposed to control the current of a 15-level neutral-point-clamped (NPC) multilevel inverter. The proposed controlled is basically a proportional-integral resonance (PIR) controller with the feedback of a harmonic compensator and a lead compensator. The performance of the proposed controller is analyzed in a MATLAB/Simulink environment. The simulation result represents admirable performance in terms of stability, sudden load change response, fault handling capability, reference tracking capability, and total harmonic distortion (THD) than those of the existing controllers. The responses of the inverter and grid outlets under different conditions are also analyzed. The harmonic compensator decreases the lower order harmonics of grid voltage and current, and the lead compensator provides the phase lead. It is expected that the proposed controller is a dynamic aspirant in the grid-connected PV system.


Sign in / Sign up

Export Citation Format

Share Document