Impurity Doping in Semiconductor Nanowires

Author(s):  
Naoki Fukata
2021 ◽  
Author(s):  
Naoki Fukata ◽  
Wipakorn Jevasuwan ◽  
Yonglie Sun ◽  
Yoshimasa Sugimoto

Abstract Control of surface defects and impurity doping are important keys to realizing devices that use semiconductor nanowires (NWs). As a structure capable of suppressing impurity scattering, p-Si/i (intrinsic)-Ge core-shell NWs with radial heterojunctions inside the NWs were formed. When forming NWs using a top-down method, the positions of the NWs can be controlled, but their surface is damaged. When heat treatment for repairing surface damage is performed, the surface roughness of the NWs closely depends on the kind of atmospheric gas. Oxidation and chemical etching prior to shell formation removes the surface damaged layer on p-SiNWs and simultaneously achieves a reduction in the diameter of the NWs. Finally, hole gas accumulation, which is important for suppressing impurity scattering, can be observed in the i-Ge layers of p-Si/i-Ge core-shell NWs.


2021 ◽  
Vol 130 (3) ◽  
pp. 034301
Author(s):  
Miguel Urbaneja Torres ◽  
Kristjan Ottar Klausen ◽  
Anna Sitek ◽  
Sigurdur I. Erlingsson ◽  
Vidar Gudmundsson ◽  
...  

2021 ◽  
Vol 118 (15) ◽  
pp. 154001
Author(s):  
Debarghya Mallick ◽  
Shoubhik Mandal ◽  
R. Ganesan ◽  
P. S. Anil Kumar

2005 ◽  
Vol 11 (S02) ◽  
Author(s):  
Y Cai ◽  
S K Chan ◽  
Y F Chan ◽  
I K Sou ◽  
D S Su ◽  
...  

Nano Letters ◽  
2012 ◽  
Vol 12 (11) ◽  
pp. 5565-5570 ◽  
Author(s):  
Shaozhou Li ◽  
Xiao Huang ◽  
Qing Liu ◽  
Xiehong Cao ◽  
Fengwei Huo ◽  
...  

2002 ◽  
Vol 742 ◽  
Author(s):  
T. Kimoto ◽  
K. Hashimoto ◽  
K. Fujihira ◽  
K. Danno ◽  
S. Nakamura ◽  
...  

ABSTRACTHomoepitaxial growth, impurity doping, and diode fabrication on 4H-SiC(11–20) and (03–38) have been investigated. Although the efficiency of nitrogen incorporation is higher on the non-standard faces than on (0001), a low background doping concentration of 2∼3×1014 cm-3 can be achieved. On these faces, boron and aluminum are less effectively incorporated, compared to the growth on off-axis (0001). 4H-SiC(11–20) epilayers are micropipe-free, as expected. More interestingly, almost perfect micropipe closing has been realized in 4H-SiC (03–38) epitaxial growth. Ni/4H-SiC(11–20) and (03–38) Schottky barrier diodes showed promising characteritics of 3.36 kV-24 mΩcm2 and 3.28 kV–22 mΩcm2, respectively. The breakdown voltage of 4H-SiC(03–38) Schottky barrier diodes was significantly improved from 1 kV to above 2.5 kV by micropipe closing.


Sign in / Sign up

Export Citation Format

Share Document