Tip Shape Effect on Screw Pile Installation and Ultimate Resistance

Author(s):  
Adnan Anwar Malik ◽  
Yahya Ndoye ◽  
Jiro Kuwano
Author(s):  
Yaseen Umar Sharif ◽  
Michael Brown ◽  
Benjamin Cerfontaine ◽  
Craig Davidson ◽  
Matteo Oryem Ciantia ◽  
...  

Existing guidance on the installation of screw piles suggest that they should be installed in a pitch-matched manner to avoid disturbance to the soil which may have a detrimental effect on the in-service performance of the pile. Recent insights from centrifuge modelling have shown that installing screw piles in this way requires large vertical compressive (or crowd) forces, which is inconsistent with the common assumption that screw piles pull themselves into the ground requiring minimal vertical compressive force. In this paper, through the use of the Discrete Element Method (DEM), the effects of advancement ratio, i.e. the ratio between the vertical displacement per rotation to the geometric pitch of the helix of the screw pile helix, on the installation resistance and in-service capacity of a screw pile is investigated. The findings are further used to assess the applicability of empirical torque capacity correlation factors for large diameter screw piles. The results of the investigation show that it is possible to reduce the required vertical compressive installation force by 96% by reducing the advancement ratio and that although over-flighting a screw pile can decrease the subsequent compressive capacity, it appears to increase the tensile capacity significantly.


Géotechnique ◽  
2021 ◽  
pp. 1-52
Author(s):  
Benjamin Cerfontaine ◽  
Michael John Brown ◽  
Jonathan Adam Knappett ◽  
Craig Davidson ◽  
Yaseen Umar Sharif ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
pp. 11-29
Author(s):  
Ahmad Jabber Hussain ◽  
Alaa Dawood Salman ◽  
. Nazar Hassan Mohammad

      According to this theoretical study which was about loading of piles under different condition of loading (compression and up-lift forces ) and for deferent pile installation (vertical and inclined pile ) by which it called (positive batter pile ) when the inclination of the load and pile is in the same direction and called (negative batter pile) when the inclination of load is opposite to the pile inclination, and from studying these cases the results of analysis can be summarize in the flowing points: 1-Variation of load inclination on piles effects on the bearing capacity and uplift resistance. It was found that bearing capacity of the piles increase with increasing of load inclination up to the inclination angle (37.5ͦ) which represents the maximum bearing capacity and then the bearing capacity decrease with increasing of load inclination. 2- Variation of batter pile affects the bearing capacity of the pile and up-lift resistance. by which equivalent angle will be used as result between the load and piles inclination and this angle will be used in calculation of piles resistance . 3- It was noticed the shape of soil failure is highly affected by the inclination of pile. The shape of failure for the soil which is in contact with pile and this include (vertical and batter piles) is highly affected by the angle of inclination.


2021 ◽  
Vol 4 (2) ◽  
pp. 1149-1161 ◽  
Author(s):  
Ana Rovisco ◽  
Rita Branquinho ◽  
Jonas Deuermeier ◽  
Tomás Freire ◽  
Elvira Fortunato ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinlong Huang ◽  
Chenyangtao Lv ◽  
Haijian Chu

AbstractBubble pressure and elastic response in helium-irradiated tungsten are systematically investigated in this study. An anomalous shape effect is found that the radial normal stress and mean stress distributions around a nanosized void or bubble are far from the spherical symmetry, which is ascribed to polyhedral geometry characteristic of the nanosized bubble and physical mechanism transition from crystal surfaces dominated to the surface ledges and triple junctions dominated. Molecular simulation shows that Young–Laplace equation is not suitable for directly predicting equilibrium pressure for nanosized bubble in crystals. Consequently, a new criterion of average radial normal stress of spherical shell is proposed to polish the concept of equilibrium pressure of helium bubbles. Moreover, the dependences of bubble size, temperature and helium/vacancy ratio (He/Vac ratio) on the bubble pressure are all documented, which may provide an insight into the understanding of mechanical properties of helium-irradiated tungsten.


Sign in / Sign up

Export Citation Format

Share Document