Improving Prediction Accuracy Using Machine Learning Classification Techniques for Alzheimer’s Disease in Healthcare Services

Author(s):  
L. Shakkeera ◽  
K. Sowmiya
2021 ◽  
Author(s):  
Ziyang Wang ◽  
Jiarong Ye ◽  
Li Ding ◽  
Tomotaroh Granzier-Nakajima ◽  
Shubhang Sharma ◽  
...  

As the most common cause of dementia, Alzheimer's disease (AD) faces challenges in terms of understanding of pathogenesis, developing early diagnosis and developing effective treatment. Rapid and accurate identification of AD biomarkers in the brain will be critical to provide novel insights of AD. To this end, in the current work, we developed a system that can enable a rapid screening of AD biomarkers by employing Raman spectroscopy and machine learning analyses in AD transgenic animal brains. Specifically, we collected Raman spectra on slices of mouse brains with and without AD, and used machine learning to classify AD and non-AD spectra. By contacting monolayer graphene with the brain slices, we achieved significantly increased accuracy from 77% to 98% in machine learning classification. Further, we identified the Raman signature bands that are most important in classifying AD and non-AD samples. Based on these, we managed to identify AD-related biomolecules, which have been confirmed by biochemical studies. Our Raman-machine learning integrated method is promising to greatly accelerate the study of AD and can be potentially extended to human samples and various other diseases.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 778
Author(s):  
Nitsa J. Herzog ◽  
George D. Magoulas

Early identification of degenerative processes in the human brain is considered essential for providing proper care and treatment. This may involve detecting structural and functional cerebral changes such as changes in the degree of asymmetry between the left and right hemispheres. Changes can be detected by computational algorithms and used for the early diagnosis of dementia and its stages (amnestic early mild cognitive impairment (EMCI), Alzheimer’s Disease (AD)), and can help to monitor the progress of the disease. In this vein, the paper proposes a data processing pipeline that can be implemented on commodity hardware. It uses features of brain asymmetries, extracted from MRI of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, for the analysis of structural changes, and machine learning classification of the pathology. The experiments provide promising results, distinguishing between subjects with normal cognition (NC) and patients with early or progressive dementia. Supervised machine learning algorithms and convolutional neural networks tested are reaching an accuracy of 92.5% and 75.0% for NC vs. EMCI, and 93.0% and 90.5% for NC vs. AD, respectively. The proposed pipeline offers a promising low-cost alternative for the classification of dementia and can be potentially useful to other brain degenerative disorders that are accompanied by changes in the brain asymmetries.


2021 ◽  
Vol 12 ◽  
Author(s):  
Carmen Lage ◽  
Sara López-García ◽  
Alexandre Bejanin ◽  
Martha Kazimierczak ◽  
Ignacio Aracil-Bolaños ◽  
...  

Oculomotor behavior can provide insight into the integrity of widespread cortical networks, which may contribute to the differential diagnosis between Alzheimer's disease and frontotemporal dementia. Three groups of patients with Alzheimer's disease, behavioral variant of frontotemporal dementia (bvFTD) and semantic variant of primary progressive aphasia (svPPA) and a sample of cognitively unimpaired elders underwent an eye-tracking evaluation. All participants in the discovery sample, including controls, had a biomarker-supported diagnosis. Oculomotor correlates of neuropsychology and brain metabolism evaluated with 18F-FDG PET were explored. Machine-learning classification algorithms were trained for the differentiation between Alzheimer's disease, bvFTD and controls. A total of 93 subjects (33 Alzheimer's disease, 24 bvFTD, seven svPPA, and 29 controls) were included in the study. Alzheimer's disease was the most impaired group in all tests and displayed specific abnormalities in some visually-guided saccade parameters, as pursuit error and horizontal prosaccade latency, which are theoretically closely linked to posterior brain regions. BvFTD patients showed deficits especially in the most cognitively demanding tasks, the antisaccade and memory saccade tests, which require a fine control from frontal lobe regions. SvPPA patients performed similarly to controls in most parameters except for a lower number of correct memory saccades. Pursuit error was significantly correlated with cognitive measures of constructional praxis and executive function and metabolism in right posterior middle temporal gyrus. The classification algorithms yielded an area under the curve of 97.5% for the differentiation of Alzheimer's disease vs. controls, 96.7% for bvFTD vs. controls, and 92.5% for Alzheimer's disease vs. bvFTD. In conclusion, patients with Alzheimer's disease, bvFTD and svPPA exhibit differentiating oculomotor patterns which reflect the characteristic neuroanatomical distribution of pathology of each disease, and therefore its assessment can be useful in their diagnostic work-up. Machine learning approaches can facilitate the applicability of eye-tracking in clinical practice.


2021 ◽  
Author(s):  
Yanming Li ◽  
Jian Kang ◽  
Chong Wu ◽  
Ivo Dinov ◽  
jinxiang Hu ◽  
...  

Introduction: A computationally fast machine learning method is introduced for uncovering the whole-brain voxel-level connectomic spectra that differentiates different status of Alzheimer's disease (AD). The method is applied to the Alzheimer's Disease Neuroimaging Initiative (ADNI) Fluorine-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) imaging and clinical data and identified novel AD/MCI differentiating connectomic neuroimaging biomarkers. Methods: A divide-and-conquer algorithm is introduced for detect informative local brain networks at voxel level and whole-brain scale. The connection information within the local networks is integrated into the node voxels, which makes detection of the marginally weak signals possible. Prediction accuracy is significantly improved by incorporating the local brain networks and marginally weak signals. Results: Brain connectomic structures differentiating AD and mild cognitive impairment (MCI), AD and healthy, and MIC and healthy were discovered. We identified novel AD/MCI-associated neuroimaging biomarkers by integrating local brain networks and marginally weak signals. For example, network-based signals in paracentral lobule (p-value=6.1e-5), olfactory cortex (p-value=4.6e-5), caudate nucleus (1.8e-3) and precentral gyrus (1.8e-3) are informative in differentiating AD and MCI. Connections between calcarine sulcus and lingual gyrus (p-value=0.049), between parahippocampal gyrus and Amygdala (p-value=0.025), between rolandic opercula and insula lobes (p-values=0.0028 and 0.0026). An overall prediction accuracy of 95.3% was achieved by integrating the selected local brain networks and marginally weak signals, compared to 84.0% by not considering the inter-voxel connections and using marginally strong signals only. Conclusion: (i) The connectomic structures differentiating AD and MCI are significantly different to that differentiating MCI and healthy, which may indicate different neuronal etiology for AD and MCI. (ii) Many neuroimaging biomarkers exert their effects on the outcome diseases through their connections to other markers. Integrating such connections can help identify novel neuroimaging biomarkers and improve disease prediction accuracy.


2013 ◽  
Vol 9 ◽  
pp. P375-P375
Author(s):  
Motonobu Fujishima ◽  
Norihide Maikusa ◽  
Noriko Chida ◽  
Hiroshi Matsuda ◽  
Fumio Yamashita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document