A Review on Social Group Optimization Technique for Power Capability Enhancement with Combined TCSC-UPFC

2021 ◽  
pp. 15-26
Author(s):  
A. V. Sunil Kumar ◽  
R. Prakash ◽  
R. S. Shivakumara Aradhya ◽  
Mahesh Lamsal
2019 ◽  
Vol 14 (4) ◽  
pp. 305-313 ◽  
Author(s):  
Suresh Chandra Satapathy ◽  
Steven Lawrence Fernandes ◽  
Hong Lin

Background: Stroke is one of the major causes for the momentary/permanent disability in the human community. Usually, stroke will originate in the brain section because of the neurological deficit and this kind of brain abnormality can be predicted by scrutinizing the periphery of brain region. Magnetic Resonance Image (MRI) is the extensively considered imaging procedure to record the interior sections of the brain to support visual inspection process. Objective: In the proposed work, a semi-automated examination procedure is proposed to inspect the province and the severity of the stroke lesion using the MRI. associations while known disease-lncRNA associations are required only. Method: Recently discovered heuristic approach called the Social Group Optimization (SGO) algorithm is considered to pre-process the test image based on a chosen image multi-thresholding procedure. Later, a chosen segmentation procedure is considered in the post-processing section to mine the stroke lesion from the pre-processed image. Results: In this paper, the pre-processing work is executed with the well known thresholding approaches, such as Shannon’s entropy, Kapur’s entropy and Otsu’s function. Similarly, the postprocessing task is executed using most successful procedures, such as level set, active contour and watershed algorithm. Conclusion: The proposed procedure is experimentally inspected using the benchmark brain stroke database known as Ischemic Stroke Lesion Segmentation (ISLES 2015) challenge database. The results of this experimental work authenticates that, Shannon’s approach along with the LS segmentation offers superior average values compared with the other approaches considered in this research work.</P>


VLSI Design ◽  
2001 ◽  
Vol 12 (3) ◽  
pp. 301-315 ◽  
Author(s):  
Koon-Shik Cho ◽  
Jun-Dong Cho

The increasing prominence of wireless multimedia systems and the need to limit power capability in very-high density VLSI chips have led to rapid and innovative developments in low-power design. Power reduction has emerged as a significant design constraint in VLSI design. The need for wireless multimedia systems leads to much higher power consumption than traditional portable applications. This paper presents possible optimization technique to reduce the energy consumption for wireless multimedia communication systems. Four topics are presented in the wireless communication systems subsection which deal with architectures such as PN acquisition, parallel correlator, matched filter and channel coding. Two topics include the IDCT and motion estimation in multimedia application.These topics consider algorithms and architectures for low power design such as using hybrid architecture in PN acquisition, analyzing the algorithm and optimizing the sample storage in parallel correlator, using complex matched filter that analog operational circuits controlled by digital signals, adopting bit serial arithmetic for the ACS operation in viterbi decoder, using CRC to adaptively terminate the SOVA iteration in turbo decoder, using codesign in RS codec, disabling the processing elements as soon as the distortion values become great than the minimum distortion value in motion estimation, and exploiting the relative occurrence of zero-valued DCT coefficient in IDCT.


2020 ◽  
Vol 12 (5) ◽  
pp. 1011-1023 ◽  
Author(s):  
Nilanjan Dey ◽  
V. Rajinikanth ◽  
Simon James Fong ◽  
M. Shamim Kaiser ◽  
Mufti Mahmud

Abstract The coronavirus disease (COVID-19) caused by a novel coronavirus, SARS-CoV-2, has been declared a global pandemic. Due to its infection rate and severity, it has emerged as one of the major global threats of the current generation. To support the current combat against the disease, this research aims to propose a machine learning–based pipeline to detect COVID-19 infection using lung computed tomography scan images (CTI). This implemented pipeline consists of a number of sub-procedures ranging from segmenting the COVID-19 infection to classifying the segmented regions. The initial part of the pipeline implements the segmentation of the COVID-19–affected CTI using social group optimization–based Kapur’s entropy thresholding, followed by k-means clustering and morphology-based segmentation. The next part of the pipeline implements feature extraction, selection, and fusion to classify the infection. Principle component analysis–based serial fusion technique is used in fusing the features and the fused feature vector is then employed to train, test, and validate four different classifiers namely Random Forest, K-Nearest Neighbors (KNN), Support Vector Machine with Radial Basis Function, and Decision Tree. Experimental results using benchmark datasets show a high accuracy (> 91%) for the morphology-based segmentation task; for the classification task, the KNN offers the highest accuracy among the compared classifiers (> 87%). However, this should be noted that this method still awaits clinical validation, and therefore should not be used to clinically diagnose ongoing COVID-19 infection.


Author(s):  
Nilanjan Dey ◽  
V. Rajinikant ◽  
Simon James Fong ◽  
M. Shamim Kaiser ◽  
Mufti Mahmud

The Coronavirus disease (COVID-19) caused by a novel coronavirus, SARS-CoV-2, has been declared as a global pandemic. Due to its infection rate and severity, it has emerged as one of the major global threats of the current generation. To support the current combat against the disease, this research aims to propose a Machine Learning based pipeline to detect the COVID-19 infection using the lung Computed Tomography scan images (CTI). This implemented pipeline consists of a number of sub-procedures ranging from segmenting the COVID-19 infection to classifying the segmented regions. The initial part of the pipeline implements the segmentation of the COVID-19 affected CTI using Social-Group-Optimization and Kapur&rsquo;s Entropy thresholding, followed by k-means clustering and morphology-based segmentation. The next part of the pipeline implements feature extraction, selection and fusion to classify the infection. PCA based serial fusion technique is used in fusing the features and the fused feature vector is then employed to train, test and validate four different classifiers namely Random Forest, k-Nearest Neighbors (KNN), Support Vector Machine with Radial Basis Function, and Decision Tree. Experimental results using benchmark datasets show a high accuracy (&gt; 91%) for the morphology-based segmentation task and for the classification task the KNN offers the highest accuracy among the compared classifiers (&gt; 87%). However, this should be noted that this method still awaits clinical validation, and therefore should not be used to clinically diagnose the ongoing COVID-19 infection.


2019 ◽  
Vol 8 (2S3) ◽  
pp. 1184-1187

Antenna array optimization is a major research problem in the field of electromagnetic and antenna engineering. The optimization typically involves in handling several radiation parameters like Sidelobe level (SL) and beamwidth (BW). In this paper, the linear antenna array (LAA) configuration is considered with symmetrical distribution of excitation and special distribution. The objective of the design problem considered involves in generating optimized patterns in terms of SLL and BW and check the robustness of the social group optimization algorithm (SGOA). The analysis of the design problem is carried out in terms of radiation pattern plots. The simulation is carried out in Matlab.


Sign in / Sign up

Export Citation Format

Share Document