Optimization Design of the Intake System Based on an Engine for FSC

Author(s):  
Liuyang Chen ◽  
Yuyang Guo ◽  
Ningwei Jin
2011 ◽  
Vol 55-57 ◽  
pp. 1619-1624
Author(s):  
Ming Yi Zhu ◽  
Zhi Hua Cui ◽  
Qing Liu

Based on parameters and design requirements of the original LJ276M gasoline engine, using Helmholtz theory to calculate resonance frequency, intake manifold length and diameter and other structural parameters, rapid design a new resonance intake system. And then apply simulation software GT-Power to build working process model of the LJ276M Electronically Controlled Gasoline engine, and determine the final structural parameters of the intake system through the use of rapid prototyping and test verification methods. Compared with the original machine, the dynamic performance is improved significantly by the use of optimum design of the intake system.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


Author(s):  
N.S. Mustafa ◽  
N.H.A. Ngadiman ◽  
M.A. Abas ◽  
M.Y. Noordin

Fuel price crisis has caused people to demand a car that is having a low fuel consumption without compromising the engine performance. Designing a naturally aspirated engine which can enhance engine performance and fuel efficiency requires optimisation processes on air intake system components. Hence, this study intends to carry out the optimisation process on the air intake system and airbox geometry. The parameters that have high influence on the design of an airbox geometry was determined by using AVL Boost software which simulated the automobile engine. The optimisation of the parameters was done by using Design Expert which adopted the Box-Behnken analysis technique. The result that was obtained from the study are optimised diameter of inlet/snorkel, volume of airbox, diameter of throttle body and length of intake runner are 81.07 mm, 1.04 L, 44.63 mm and 425 mm, respectively. By using these parameters values, the maximum engine performance and minimum fuel consumption are 93.3732 Nm and 21.3695×10-4 kg/s, respectively. This study has fully accomplished its aim to determine the significant parameters that influenced the performance of airbox and optimised the parameters so that a high engine performance and fuel efficiency can be produced. The success of this study can contribute to a better design of an airbox.


2005 ◽  
Vol 42 (5) ◽  
pp. 1375-1375 ◽  
Author(s):  
Shinkyu Jeong ◽  
Mitsuhiro Murayama ◽  
Kazuomi Yamamoto

2019 ◽  
Vol 20 (5) ◽  
pp. 375-384
Author(s):  
Dae-Hung Kang ◽  
Yeongseok Kim ◽  
Sun-Joon Park ◽  
Ikjoong Kim
Keyword(s):  

Author(s):  
Sai-jun LV ◽  
Long-yang DAI ◽  
Long-yang DAI ◽  
Hong-geng ZHU

Sign in / Sign up

Export Citation Format

Share Document