Natural Ventilation and Cooling of a House with a Solar Chimney Coupled with an Earth – To – Air Heat Exchanger

2021 ◽  
pp. 158-168
Author(s):  
Viet Tuan Nguyen ◽  
Y Quoc Nguyen ◽  
Trieu Nhat Huynh
Encyclopedia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 409-422
Author(s):  
Haihua Zhang ◽  
Yao Tao ◽  
Long Shi

A solar chimney is a renewable energy system used to enhance the natural ventilation in a building based on solar and wind energy. It is one of the most representative solar-assisted passive ventilation systems attached to the building envelope. It performs exceptionally in enhancing natural ventilation and improving thermal comfort under certain climate conditions. The ventilation enhancement of solar chimneys has been widely studied numerically and experimentally. The assessment of solar chimney systems based on buoyancy ventilation relies heavily on the natural environment, experimental environment, and performance prediction methods, bringing great difficulties to quantitative analysis and parameterization research. With the increase in volume and complexity of modern building structures, current studies of solar chimneys have not yet obtained a unified design strategy and corresponding guidance. Meanwhile, combining a solar chimney with other passive ventilation systems has attracted much attention. The solar chimney-based integrated passive-assisted ventilation systems prolong the service life of an independent system and strengthen the ventilation ability for indoor cooling and heating. However, the progress is still slow regarding expanded applications and related research of solar chimneys in large volume and multi-layer buildings, and contradictory conclusions appear due to the inherent complexity of the system.


Author(s):  
B. P. Huynh

Natural-ventilation flow induced in a real-sized rectangular-box room fitted with a solar chimney on its roof is investigated numerically, using a commercial CFD (Computational Fluid Dynamics) software package. The chimney in turn is in the form of a parallel channel with one plate being subjected to uniform solar heat flux. Ventilation rate and air-flow pattern through the room are considered in terms of the heat flux for two different locations of the room’s inlet opening. Chien’s turbulence model of low-Reynolds-number K-ε is used in a Reynolds-Averaged Navier-Stokes (RANS) formulation. It is found that ventilation flow rate increases quickly with solar heat flux when this flux is low, but more gradually at higher flux. At low heat flux, ventilation rate is not significantly affected by location of the inlet opening to the room. On the other hand, at high heat flux, ventilation rate varies substantially with the opening’s location. Location of the inlet opening to the room also affects strongly the air-flow pattern. In any case, ample ventilation rate is readily induced by the chimney.


Author(s):  
David Park ◽  
Francine Battaglia

A solar chimney is a natural ventilation technique that has a potential to save energy consumption as well as to maintain the air quality in the building. However, studies of buildings are often challenging due to their large sizes. The objective of the current study was to determine relationships between small- and full-scale solar chimney system models. In the current work, computational fluid dynamics (CFD) was utilized to model different building sizes with a solar chimney system, where the computational model was validated with the experimental study of Mathur et al. The window, which controls entrainment of ambient air, was also studied to determine the effects of window position. Correlations for average velocity ratio and non-dimensional temperature were consistent regardless of window position. Buckingham pi theorem was employed to further non-dimensionalize the important variables. Regression analysis was conducted to develop a mathematical model to predict a relationship among all of the variables, where the model agreed well with simulation results with an error of 2.33%. The study demonstrated that the flow and thermal conditions in larger buildings can be predicted from the small-scale model.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
David Park ◽  
Francine Battaglia

A solar chimney is a natural ventilation technique that has potential to save energy consumption as well as to maintain the air quality in a building. However, studies of buildings are often challenging due to their large sizes. The objective of this study was to determine the relationships between small- and full-scale solar chimney system models. Computational fluid dynamics (CFD) was employed to model different building sizes with a wall-solar chimney utilizing a validated model. The window, which controls entrainment of ambient air for ventilation, was also studied to determine the effects of window position. A set of nondimensional parameters were identified to describe the important features of the chimney configuration, window configuration, temperature changes, and solar radiation. Regression analysis was employed to develop a mathematical model to predict velocity and air changes per hour, where the model agreed well with CFD results yielding a maximum relative error of 1.2% and with experiments for a maximum error of 3.1%. Additional wall-solar chimney data were tested using the mathematical model based on random conditions (e.g., geometry, solar intensity), and the overall relative error was less than 6%. The study demonstrated that the flow and thermal conditions in larger buildings can be predicted from the small-scale model, and that the newly developed mathematical equation can be used to predict ventilation conditions for a wall-solar chimney.


Author(s):  
Magdalena Nakielska ◽  
Krzysztof Pawłowski

Nowadays, people are looking for solutions related to ventilation, cooling or heat demand systems, which would be energy efficient and, at the same time, would not cause the degradation of the surrounding environment. As far as ventilation is concerned, an good solution is a natural ventilation, which improves thermal comfort rooms without increasing the consumption of electrical energy in the building. In order to improve the mode of action of the natural ventilation in the building, one can mount various elements supporting the air flow. One of them is a solar chimney. In order to check the correct operation of a gravity ventilation installation in Poland’s climatic conditions, the measurements was carried out on a test stand on the 3.1 building of UTP University of Science and Technology in Bydgoszcz. The received results show the intensification of the air flow through the room the value between 50% and 150%, depending on a measuring hour (Chen et al. 2003). These research results were compared with the research results received before the installation of the solar chimney on the ducts of the gravity ventilation.


2020 ◽  
Vol 44 (3) ◽  
pp. 225-250
Author(s):  
Y Quoc Nguyen ◽  
John Craig Wells

This study investigates performance of a vertical solar chimney, which absorbs solar energy and induces airflow for natural ventilation and cooling of dwellings, under effects of walls neighboring to its air channel. A computational fluid dynamics model was developed to predict induced flow rate and thermal efficiency of a vertical solar chimney with four types of nearby walls: a vertical wall to which the solar chimney was attached, a horizontal plate above the outlet of the air channel, a horizontal plate, and a horizontal wall below the inlet of the air channel. Examined factors included the heat flux in the air channel, the chimney height, the air gap, the distance of the walls, and the location of the heat source in the air channel. The results showed that effects of the wall proximity were modulated by the location of the heat source and the ratio G/ H between the air gap and the chimney height. Particularly, performance of the chimney was enhanced when the heat source was on the opposite side of the vertical wall and when G/ H was large.


Sign in / Sign up

Export Citation Format

Share Document