Assessment of Interbasin Water Transfer Using Geoinformatics Approach: A Case Study of Shivnath Basin, India

Author(s):  
Chandan Kumar Singh ◽  
Divesh Lanjewar ◽  
Ishtiyaq Ahmad ◽  
Y. B. Katpatal
Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 42
Author(s):  
Gerald Norbert Souza da Silva ◽  
Márcia Maria Guedes Alcoforado de Moraes

The development of adequate modeling at the basin level to establish public policies has an important role in managing water resources. Hydro-economic models can measure the economic effects of structural and non-structural measures, land and water management, ecosystem services and development needs. Motivated by the need of improving water allocation using economic criteria, in this study, a Spatial Decision Support System (SDSS) with a hydro-economic optimization model (HEAL system) was developed and used for the identification and analysis of an optimal economic allocation of water resources in a case study: the sub-middle basin of the São Francisco River in Brazil. The developed SDSS (HEAL system) made the economically optimum allocation available to analyze water allocation conflicts and trade-offs. With the aim of providing a tool for integrated economic-hydrological modeling, not only for researchers but also for decision-makers and stakeholders, the HEAL system can support decision-making on the design of regulatory and economic management instruments in practice. The case study results showed, for example, that the marginal benefit function obtained for inter-basin water transfer, can contribute for supporting the design of water pricing and water transfer decisions, during periods of water scarcity, for the well-being in both basins.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2564 ◽  
Author(s):  
Anderson Passos de Aragão ◽  
Patrícia Teixeira Leite Asano ◽  
Ricardo de Andrade Lira Rabêlo

The Hydrothermal Coordination problem consists of determining an operation policy for hydroelectric and thermoelectric plants within a given planning horizon. In systems with a predominance of hydraulic generation, the operation policy to be adopted should specify the operation of hydroelectric plants, so that hydroelectric resources are used economically and reliably. This work proposes the implementation of reservoir operation rules, using inter-basin water transfer through an optimization model based on Network Flow and Particle Swarm Optimization (PSO). The proposed algorithm aims to obtain an optimized operation policy of power generation reservoirs and consequently to maximize the hydroelectric benefits of the hydrothermal generation system, to reduce the use of thermoelectric plants, the importation and/or energy deficit and to reduce the cost associated with meeting the demand and reduce CO2 emissions from combustion of fossil fuels used by thermoelectric plants. In order to illustrate the efficiency and effectiveness of the proposed approach, it was evaluated by optimizing two case studies using a system with four hydroelectric plants. The first case study does not consider transfer and water and the second case study uses water transfer between rivers. The obtained results illustrate that the proposed model allowed to maximize the hydroelectric resources of a hydrothermal generation system with economy and reliability.


2012 ◽  
Vol 256-259 ◽  
pp. 2523-2527
Author(s):  
Qian Wei Wang ◽  
Rui Rui Sun ◽  
Wei Ping Guo

With regards to the characteristics of inter-basin water transfer projects, a 3d visual simulation (Three-Dimensional Visual Simulation, 3DVS) method for inter-basin water transfer project was proposed. A virtual reproduction of the entire project and its topography is achieved. The supplement of the three-dimensional topographic data was completed by Civil 3D combinedwith Google Earth. In this paper, the 3D digital model of inter-basin water transfer project is established using 3ds Max. Based on the established digital model, the simulation of channel water were realized .The Yuzhou section of South-to-North Water Transfer Project is taken as a case study. 3D visual simulation provides an effective way for the construction management and decision-making for inter-basin water diversion project.


Zootaxa ◽  
2021 ◽  
Vol 4964 (1) ◽  
pp. 37-60
Author(s):  
ALEX BARBOSA DE MORAES ◽  
DANIELE COSME SOARES DE MORAES ◽  
CARLOS EDUARDO ROCHA DUARTE ALENCAR ◽  
ALLYSSON PONTES PINHEIRO ◽  
SERGIO MAIA QUEIROZ LIMA ◽  
...  

This study constitutes the most comprehensive effort ever done to assess the faunal diversity of the Macrobrachium genus within two ecoregions that encompass part of the northeastern Brazil: the Northeastern Caatinga & Coastal Drainages, and the São Francisco (Lower-middle and Lower portions). Through sampling in several of their hydrographic basins, bibliographic research, and consulting scientific collections, our results reveal the occurrence of five species along these ecoregions: Macrobrachium acanthurus, M. amazonicum, M. carcinus, M. jelskii and M. olfersii. We also provide the first record of these species for several river basins in both ecoregions. Additionally, we confirm the occurrence of M. carcinus from Rio Grande do Norte State and provide updated distribution maps for each species in the studied area. This carcinofauna survey may form the basis for future evaluations of eventual anthropic impacts on biological diversity resulting from projects being implemented in these regions, which involve the São Francisco interbasin water transfer.


2016 ◽  
Vol 52 (6) ◽  
pp. 1060-1068 ◽  
Author(s):  
H. Haeri ◽  
H. Tavakoli ◽  
A. B. Shemirani ◽  
V. Sarfarazi ◽  
M. Farazmand

Author(s):  
Edward Rollason ◽  
Pammi Sinha ◽  
Louise J Bracken

Water scarcity is a global issue, affecting in excess of four billion people. Interbasin Water Transfer (IBWT) is an established method for increasing water supply by transferring excess water from one catchment to another, water-scarce catchment. The implementation of IBWT peaked in the 1980s and was accompanied by a robust academic debate of its impacts. A recent resurgence in the popularity of IBWT, and particularly the promotion of mega-scale schemes, warrants revisiting this technology. This paper provides an updated review, building on previously published work, but also incorporates learning from schemes developed since the 1980s. We examine the spatial and temporal distribution of schemes and their drivers, review the arguments for and against the implementation of IBWT schemes and examine conceptual models for assessing IBWT schemes. Our analysis suggests that IBWT is growing in popularity as a supply-side solution for water scarcity and is likely to represent a key tool for water managers into the future. However, we argue that IBWT cannot continue to be delivered through current approaches, which prioritise water-centric policies and practices at the expense of social and environmental concerns. We critically examine the Socio-Ecological Systems and Water-Energy-Food (WEF) Nexus models as new conceptual models for conceptualising and assessing IBWT. We conclude that neither model offers a comprehensive solution. Instead, we propose an enhanced WEF model (eWEF) to facilitate a more holistic assessment of how these mega-scale engineering interventions are integrated into water management strategies. The proposed model will help water managers, decision-makers, IBWT funders and communities create more sustainable IBWT schemes.


Sign in / Sign up

Export Citation Format

Share Document