Trend Analysis of Water Quality Parameters in a Selected Distribution System

2021 ◽  
pp. 513-525
Author(s):  
K. Chowdhury ◽  
A. Akter
2013 ◽  
Vol 11 (3) ◽  
pp. 199-210 ◽  
Author(s):  
Milan Gocic ◽  
Slavisa Trajkovic

The data of 12 water quality parameters have been daily monitored at the Nis station on the Nisava River during 2000-2004. The trend analysis was performed on monthly, seasonal and annual time series using the Mann-Kendall test, the Spearman?s Rho test and the linear regression at the 5% significance level. The monthly results showed that significant trends were found only in pH, total hardness, Ca and SO4 data. The results in seasonal series indicated that the significant trends were detected in pH, total hardness, Cl, Ca and SO4 data. In annual series, the trends were insignificant at the 5% significance level.


1993 ◽  
Vol 28 (2) ◽  
pp. 311-336 ◽  
Author(s):  
I.K. Tsanis

Abstract A series of programs have been developed using the statistical package Minitab to evaluate trends of water quality parameters over a time period. These programs are included in an interactive program with graphic capabilities called Water Quality Trend Analysis (WQTA). The output files from the retrieval and year programs of the National Water Quality Data Bank (NAQUADAT) are used as input files to the program. The graphic output is obtained using the graphical package Axum. Twelve-month moving averages and the Spearman’s rank correlation are applied for trend assessments. The components of variability (seasonal, trend and random) of the water quality parameters are modelled using linear regression. The methods are applied successfully to selected physical and chemical water quality parameters collected at the mouth of Niagara River, at Niagara-on-the-Lake, during the period 1976–89. The specific conductance was decreasing for the period as the discharge was increasing, due to higher dilution effects. A modest downward trend for total phosphorus was observed for the period 1976–84, and there is no trend between 1984-89. A strong decreasing trend for chloride was observed during the 1977–84 period but this has levelled off since then. A strong upward trend for iron and a weak downward trend for lead was evident over the study period.


Water SA ◽  
2019 ◽  
Vol 45 (2 April) ◽  
Author(s):  
Denis Nono ◽  
Phillimon T Odirile ◽  
Innocent Basupi ◽  
Bhagabat P Parida

Assessment of probable causes of chlorine decay in water distribution systems of Gaborone city, Botswana Gaborone city water distribution system (GCWDS) is rapidly expanding and has been faced with the major problems of high water losses due to leakage, water shortages due to drought and inadequate chlorine residuals at remote areas of the network. This study investigated the probable causes of chlorine decay, due to pipe wall conditions and distribution system water quality in the GCWDS. An experimental approach, which applied a pipe-loop network model to estimate biofilm growth and chlorine reaction rate constants, was used to analyse pipe wall chlorine decay. Also, effects of key water quality parameters on chlorine decay were analysed. The water quality parameters considered were: natural organic matter (measured by total organic carbon, TOC; dissolved organic carbon, DOC; and ultraviolet absorbance at wavelength 254, UVA-254, as surrogates), inorganic compounds (iron and manganese) and heterotrophic plate count (HPC). Samples were collected from selected locations in the GCWDS for analysis of water quality parameters. The results of biofilm growth and chlorine reaction rate constants revealed that chlorine decay was higher in pipe walls than in the bulk of water in the GCWDS. The analysis of key water quality parameters revealed the presence of TOC, DOC and significant levels of organics (measured by UVA-254), which suggests that organic compounds contributed to chlorine decay in the GCWDS. However, low amounts of iron and manganese (< 0.3 mg/L) indicated that inorganic compounds may have had insignificant contributions to chlorine decay. The knowledge gained on chlorine decay would be useful for improving water treatment and network operating conditions so that appropriate chlorine residuals are maintained to protect the network from the risks of poor water quality that may occur due to the aforementioned problems.


Author(s):  
Keya Chowdhury ◽  
Aysha Akter

Abstract Rapid urbanization poses challenges to meet the increased water supply demands. Apart from the quantity, the distributed water quality often fails to meet the permissible level. This study aimed to conduct a citywide spatio-temporal variation of water quality parameters. Water sampling points were selected by applying the Analytical Hierarchical Process (AHP) technique using ArcGIS considering pipe leakage, source water quality, pipe age, and pipe materials. The Chattogram city comprises 397 km of pipes; pipe material distribution shows 71.28% PVC, 20.94% asbestos, 5.16% mild steel, 2.17% ductile, and 0.45% cast iron. The citywide pipe network was established in 1963; 20.87% of pipes aged over 30 years, 15.07% 20–30 years, 26.38% 10–20 years, and 37.68% pipelines are relatively new, i.e., within 0–10 years. Eight water quality parameters, i.e., pH, temperature, turbidity, biochemical oxygen demand after five days (BOD5), total coliform, fecal coliform, chloride, and residual chlorine, were collected from the secondary source cross-checked by field survey. Computation of the Water Quality Index (WQI) was interpolated using Inverse Distance Weighted (IDW) method to generate a WQI map. Thus, this study could be a basis to improve the treatment system and proper distribution network maintenance.


2001 ◽  
Vol 5 (4) ◽  
pp. 679-692 ◽  
Author(s):  
V. Z. Antonopoulos ◽  
D. M. Papamichail ◽  
K. A. Mitsiou

Abstract. Strymon is a transboundary river of Greece, Bulgaria and Former Yugoslav Republic of Macedonia (FYROM) in southeastern Europe. Water quality parameters and the discharge have been monitored each month just 10 km downstream of the river’s entry into Greece. The data of nine water quality variables (T, ECw, DO, SO42-, Na++K+, Mg2+ , Ca2+, NO3‾, TP) and the discharge for the period 1980-1997 were selected for this analysis. In this paper a) the time series of monthly values of water quality parameters and the discharge were analysed using statistical methods, b) the existence of trends and the evaluation of the best fitted models were performed and c) the relationships between concentration and loads of constituents both with the discharge were also examined. Boxplots for summarising the distribution of a data set were used. The &amp;#9672-test and the Kolmogorov-Smirnov test were used to select the theoretical distribution which best fitted the data. Simple regression was used to examine the concentration-discharge and the load-discharge relationships. According to the correlation coefficient (r) values the relation between concentrations and discharge is weak (r< 0.592) while the relation between loads and discharge is very strong (r > 0.902). Trends were detected using the nonparametric Spearman’s criterion upon the data for the variables: Q, ECw, DO, SO42-, Na++K+ and NO3‾ on which temporal trend analysis was performed. Keywords: Strymon river, water quality, discharge, concentration, load, statistics, trends


2020 ◽  
Vol 10 (2) ◽  
pp. 179-190
Author(s):  
Pardon Dandadzi ◽  
Zvikomborero Hoko ◽  
Tamuka Nhiwatiwa

Abstract This study assessed the quality of drinking water in the water supply system for the City of Harare (Zimbabwe) by investigating the occurrence of algae and other water quality parameters that affect its growth. At Morton Jaffray Water Treatment Works (MJWTWs), samples were collected from the raw water inlet and treated water outlet points. In the distribution system, samples were collected from selected sites and grouped into four zones (1, 2, 3 and 4). The algal taxonomic groups that were found in both raw and treated water comprised of Cyanophyceae, Chlorophyceae, Bacillariophyceae, Euglenophyceae and Dinophyceae. It was found out that Microcystis aeruginosa followed by Anabaena were the most abundant species in both raw water and in the distribution system. All measured water quality parameters were within the Standards Association of Zimbabwe and WHO guideline values except for chlorine which had an average residual chlorine concentration that was lower than the WHO recommended lower value of 0.2 mg/L in parts of Zone 2. Morton Jaffray Water Treatment Works does not completely remove algae, and there is a carry-over of algae into the distribution system. Boosting of chlorine is recommended for Zone 2 that had residual chlorine less than the WHO minimum threshold of 0.2 mg/L.


2021 ◽  
Vol 241 ◽  
pp. 01005
Author(s):  
Naseraldin Kayemah ◽  
Rami Al-Ruzouq ◽  
Abdallah Shanableh ◽  
Abdullah Gokhan Yilmaz

The rapid growth in the world population resulted in an increase of the freshwater needs in many sectors. Groundwater is the most important freshwater source specially for arid and semi-arid regions due to lack of surface water sources and low precipitation rates in those regions. In this study, monthly groundwater quality data were collected from eleven well fields in Sharjah over the period of 2004-2017. Water quality parameters including bicarbonate, calcium, chloride, fluoride, magnesium, sodium and sulphate were selected for the analysis. In the study, water quality index (WQI) process is used to develop groundwater quality index (GWQI) for Sharjah using above mentioned water quality parameters. Mann-Kendall and Spearman’s Rho tests were adopted as non-parametric trend tests for temporal (trend) analysis of GWQI, whereas inverse distance weighting interpolation was used in GWQI spatial trend analysis. Temporal trend analysis results showed significant trends in 8 out of 11 well fields. Spatial analysis showed the highest values for salinity ions in the well fields closest to the northern region, whereas the lowest values were detected in the southern region.


Sign in / Sign up

Export Citation Format

Share Document