1D Periodic Nonlinear Model and Using It to Design All-Optical Parity Generator Cum Checker Circuit

2021 ◽  
pp. 137-151
Author(s):  
Tanay Chattopadhyay
2021 ◽  
Vol 11 (4) ◽  
pp. 1499
Author(s):  
Bingchen Han ◽  
Junyu Xu ◽  
Pengfei Chen ◽  
Rongrong Guo ◽  
Yuanqi Gu ◽  
...  

An all-optical non-inverted parity generator and checker based on semiconductor optical amplifiers (SOAs) are proposed with four-wave mixing (FWM) and cross-gain modulation (XGM) non-linear effects. A 2-bit parity generator and checker using by exclusive NOR (XNOR) and exclusive OR (XOR) gates are implemented by first SOA and second SOA with 10 Gb/s return-to-zero (RZ) code, respectively. The parity and check bits are provided by adjusting the center wavelength of the tunable optical bandpass filter (TOBPF). A saturable absorber (SA) is used to reduce the negative effect of small signal clock (Clk) probe light to improve extinction ratio (ER) and optical signal-to-noise ratio (OSNR). For Pe and Ce (even parity bit and even check bit) without Clk probe light, ER and OSNR still maintain good performance because of the amplified effect of SOA. For Po (odd parity bit), ER and OSNR are improved to 1 dB difference for the original value. For Co (odd check bit), ER is deteriorated by 4 dB without SA, while OSNR is deteriorated by 12 dB. ER and OSNR are improved by about 2 dB for the original value with the SA. This design has the advantages of simple structure and great integration capability and low cost.


2018 ◽  
Vol 57 (3) ◽  
pp. 032201
Author(s):  
Naoki Kobayashi ◽  
Yusaku Kawamura ◽  
Ryosuke Aoki ◽  
Yasuo Kokubun

2013 ◽  
Vol 303 ◽  
pp. 30-37 ◽  
Author(s):  
Jayanta Kumar Rakshit ◽  
Jitendra Nath Roy ◽  
Tanay Chattopadhyay

Author(s):  
R. Hegerl ◽  
A. Feltynowski ◽  
B. Grill

Till now correlation functions have been used in electron microscopy for two purposes: a) to find the common origin of two micrographs representing the same object, b) to check the optical parameters e. g. the focus. There is a third possibility of application, if all optical parameters are constant during a series of exposures. In this case all differences between the micrographs can only be caused by different noise distributions and by modifications of the object induced by radiation.Because of the electron noise, a discrete bright field image can be considered as a stochastic series Pm,where i denotes the number of the image and m (m = 1,.., M) the image element. Assuming a stable object, the expectation value of Pm would be Ηm for all images. The electron noise can be introduced by addition of stationary, mutual independent random variables nm with zero expectation and the variance. It is possible to treat the modifications of the object as a noise, too.


Sign in / Sign up

Export Citation Format

Share Document