A Case Study of Shape Optimization Using Grasshopper Optimization Algorithm

Author(s):  
Faik Fatih Korkmaz ◽  
Mert Subran ◽  
Ali Rıza Yıldız
2021 ◽  
Author(s):  
Hala A. Omar ◽  
Mohammed El-Shorbagy

Abstract Grasshopper optimization algorithm (GOA) is one of the promising optimization algorithms for optimization problems. But, it has the main drawback of trapping into a local minimum, which causes slow convergence or inability to detect a solution. Several modifications and combinations have been proposed to overcome this problem. In this paper, a modified grasshopper optimization algorithm (MGOA) based genetic algorithm (GA) is proposed to overcome this problem. Modifications rely on certain mathematical assumptions and varying the domain of the Cmax control parameter to escape from the local minimum and move the search process to a new improved point. Parameter C is one of the most important parameters in GOA where it balances the exploration and exploitation of the search space. These modifications aim to lead to speed up the convergence rate by reducing the repeated solutions and the number of iterations. The proposed algorithm will be tested on the 19 main test functions to verify and investigate the influence of the proposed modifications. In addition, the algorithm will be applied to solve 5 different cases of nonlinear systems with different types of dimensions and regularity to show the reliability and efficiency of the proposed algorithm. Good results were achieved compared to the original GOA.


2020 ◽  
Vol 62 (7) ◽  
pp. 744-748 ◽  
Author(s):  
A. B. S. Yıldız ◽  
N. Pholdee ◽  
S. Bureerat ◽  
A. R. Yıldız ◽  
S. M. Sait

Abstract In this paper, the sine-cosine optimization algorithm (SCO) is used to solve the shape optimization of a vehicle clutch lever. The design problem is posed for the shape optimization of a clutch lever with a mass objective function and a stress constraint. Actual function evaluations are based on finite element analysis, while the response surface method is used to obtain the equations for objective and constraint functions. Recent optimization techniques such as the salp swarm algorithm, grasshopper optimization algorithm, and sine-cosine algorithm are used for shape optimization. The results show the ability of the sine-cosine optimization algorithm to optimize automobile components in the industry.


2021 ◽  
Author(s):  
Betül Sultan Yildiz ◽  
Nantiwat Pholdee ◽  
Sujin Bureerat ◽  
Ali Riza Yildiz ◽  
Sadiq M. Sait

Author(s):  
Wei Liu ◽  
Shuai Yang ◽  
Zhiwei Ye ◽  
Qian Huang ◽  
Yongkun Huang

Threshold segmentation has been widely used in recent years due to its simplicity and efficiency. The method of segmenting images by the two-dimensional maximum entropy is a species of the useful technique of threshold segmentation. However, the efficiency and stability of this technique are still not ideal and the traditional search algorithm cannot meet the needs of engineering problems. To mitigate the above problem, swarm intelligent optimization algorithms have been employed in this field for searching the optimal threshold vector. An effective technique of lightning attachment procedure optimization (LAPO) algorithm based on a two-dimensional maximum entropy criterion is offered in this paper, and besides, a chaotic strategy is embedded into LAPO to develop a new algorithm named CLAPO. In order to confirm the benefits of the method proposed in this paper, the other seven kinds of competitive algorithms, such as Ant–lion Optimizer (ALO) and Grasshopper Optimization Algorithm (GOA), are compared. Experiments are conducted on four different kinds of images and the simulation results are presented in several indexes (such as computational time, maximum fitness, average fitness, variance of fitness and other indexes) at different threshold levels for each test image. By scrutinizing the results of the experiment, the superiority of the introduced method is demonstrated, which can meet the needs of image segmentation excellently.


Sign in / Sign up

Export Citation Format

Share Document