Multiferroic Material Bismuth Ferrite (BFO): Effect of Synthesis

Author(s):  
Ritesh Verma ◽  
Ankush Chauhan ◽  
Neha ◽  
Rajesh Kumar
2018 ◽  
Vol 30 (33) ◽  
pp. 1705665 ◽  
Author(s):  
Hajime Hojo ◽  
Kengo Oka ◽  
Keisuke Shimizu ◽  
Hajime Yamamoto ◽  
Ryo Kawabe ◽  
...  

Author(s):  
Dwita Suastiyanti ◽  
Sri Yatmani ◽  
YuliNurul Maulida

Bismuth ferrite (BiFeO3) is one of multiferroic material group, but it is difficult to produce BiFeO3 in single phase as multiferroic material because it occurs leakage of current arising from non stoichiometric. So, to minimize it, it has already been engineering processed to synthesis BiFeO3 doped by Mg to produce Bi0.9Mg0.1FeO3 and Bi0.93Mg0.07FeO3. It used sol-gel method to produce the ceramics. The result of TGA/DTA(Thermo Gravimetric Analysis/Differential Thermal Analysis) test shows that the temperature of calcination is about of 150 and 175oC and temperature of sintering is about of 650oC. Characterization of the powder has already been done by using X-Ray Diffraction (XRD) test and electrical properties test. The results of XRD test show that the powder of Bi0.9Mg0.1FeO3has minimum impurities with total oxide of 6.9% (bismite 3.5% and silenite 3.4%) at calcination temperature of 175oC for 4 hours and sintering at 650oC for 6 hours. Meanwhile at same parameter, Bi0.93Mg0.07FeO3 has more oxide phases with total oxide of 14.5% which consists of silenite (2.5%) and Bi2O4 (12%). Presence of oxide phases could cause leakage of current decreasing electrical properties. The values of electrical saturation polarization for ceramic having minimum total oxide (Bi0.9Mg0.1FeO3) is higher than ceramic having more oxide (Bi0.93Mg0.07FeO3). The value of electric saturation polarization for Bi0.9Mg0.1FeO3 is of 0.26 kv/cm and for Bi0.93Mg0.07FeO3 is of 0.11 kV/cm.


2019 ◽  
Author(s):  
Ayesha Tariq ◽  
M. Abdullah Iqbal ◽  
S. Irfan Ali ◽  
Muhammad Z. Iqbal ◽  
Deji Akinwande ◽  
...  

<p>Nanohybrids, made up of Bismuth ferrites/Carbon allotropes, are extensively used in photocatalytic applications nowadays. Our work proposes a nanohybrid system composed of Bismuth ferrite nanoparticles with two-dimensional (2D) MXene sheets namely, the BiFeO<sub>3</sub> (BFO)/Ti<sub>3</sub>C<sub>2</sub> (MXene) nanohybrid for enhanced photocatalytic activity. We have fabricated the BFO/MXene nanohybrid using simple and low cost double solvent solvothermal method. The SEM and TEM images show that the BFO nanoparticles were attached onto the MXene surface and in the inter-layers of two-dimensional (2D) MXene sheets. The photocatalytic application is tested for the visible light irradiation which showed the highest efficiency among all pure-BFO based photocatalysts, i.e. 100% degradation in 42 min for organic dye (Congo Red) and colorless aqueous pollutant (acetophenone) in 150 min, respectively. The present BFO-based hybrid system exhibited the large surface area of 147 m<sup>2</sup>g<sup>-1</sup>measured via Brunauer-Emmett-Teller (BET) sorption-desorption technique, and is found to be largest among BFO and its derivatives. Also, the photoluminescence (PL) spectra indicate large electron-hole pair generation. Fast and efficient degradation of organic molecules is supported by both factors; larger surface area and lower electron-hole recombination rate. The BFO/MXene nanohybrid presented here is a highly efficient photocatalyst compared to other nanostructures based on pure BiFeO<sub>3</sub> which makes it a promising candidate for many future applications.</p>


Author(s):  
Ştefan Ţălu ◽  
Arumugasamy Sathiya Priya ◽  
Deivasigamani Geetha
Keyword(s):  

2021 ◽  
Vol 154 (15) ◽  
pp. 154702
Author(s):  
Nicola A. Spaldin ◽  
Ipek Efe ◽  
Marta D. Rossell ◽  
Chiara Gattinoni

2010 ◽  
Vol 108 (11) ◽  
pp. 114306 ◽  
Author(s):  
Partha Hajra ◽  
Mrinal Pal ◽  
Anindya Datta ◽  
Dipankar Chakravorty ◽  
Vyacheslav Meriakri ◽  
...  
Keyword(s):  

2015 ◽  
Vol 98 (12) ◽  
pp. 3884-3890 ◽  
Author(s):  
Neamul H. Khansur ◽  
Tadej Rojac ◽  
Dragan Damjanovic ◽  
Christina Reinhard ◽  
Kyle G. Webber ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document