The Analysis of HGV Fire Scenarios in Tunnel with Point-Extraction Ventilation

Author(s):  
Li-Wu Fan ◽  
Guan-Yuan Wu
Keyword(s):  
2000 ◽  
Vol 18 (5) ◽  
pp. 354-375
Author(s):  
VINCENT BRANNIGAN ◽  
ANTHONY KILPATRICK

2021 ◽  
pp. 073490412199344
Author(s):  
Wolfram Jahn ◽  
Frane Sazunic ◽  
Carlos Sing-Long

Synthesising data from fire scenarios using fire simulations requires iterative running of these simulations. For real-time synthesising, faster-than-real-time simulations are thus necessary. In this article, different model types are assessed according to their complexity to determine the trade-off between the accuracy of the output and the required computing time. A threshold grid size for real-time computational fluid dynamic simulations is identified, and the implications of simplifying existing field fire models by turning off sub-models are assessed. In addition, a temperature correction for two zone models based on the conservation of energy of the hot layer is introduced, to account for spatial variations of temperature in the near field of the fire. The main conclusions are that real-time fire simulations with spatial resolution are possible and that it is not necessary to solve all fine-scale physics to reproduce temperature measurements accurately. There remains, however, a gap in performance between computational fluid dynamic models and zone models that must be explored to achieve faster-than-real-time fire simulations.


2021 ◽  
pp. 136943322199249
Author(s):  
Riza Suwondo ◽  
Lee Cunningham ◽  
Martin Gillie ◽  
Colin Bailey

This study presents robustness analyses of a three-dimensional multi-storey composite steel structure under the action of multiple fire scenarios. The main objective of the work is to improve current understanding of the collapse resistance of this type of building under different fire situations. A finite element approach was adopted with the model being firstly validated against previous studies available in the literature. The modelling approach was then used to investigate the collapse resistance of the structure for the various fire scenarios examined. Different sizes of fire compartment are considered in this study, starting from one bay, three bays and lastly the whole ground floor as the fire compartment. The investigation allows a fundamental understanding of load redistribution paths and member interactions when local failure occurs. It is concluded that the robustness of the focussed building in a fire is considerably affected by the size of fire compartments as well as fire location. The subject building can resist progressive collapse when the fire occurs only in the one-bay compartment. On the other hand, total collapse occurs when fire is located in the edge three-bay case. This shows that more than one fire scenario needs to be taken into consideration to ensure that a structure of this type can survive from collapse in the worst-case situation.


2006 ◽  
Vol 41 (9) ◽  
pp. 1203-1213 ◽  
Author(s):  
T.X. Qin ◽  
Y.C. Guo ◽  
C.K. Chan ◽  
W.Y. Lin

Author(s):  
Paula T. Nascimento ◽  
Marco A. P. Rosas ◽  
Leonardo Brandão ◽  
Fernando Castanheira

The present study compares the progressive collapse approach with the traditional temperature screening method on determination of PFP requirements at topside offshore structures. The advantage to evaluate the consequences of fire scenarios on the global integrity and stability of topside modules can be revealed by a substantial reduction of the required amount of PFP, and consequently significant cost savings for operators, when compared to the traditional approach. In the case study presented in this paper, there is a reduction of 79% in PFP allocation.


2014 ◽  
Vol 102 (43) ◽  
pp. 71-78
Author(s):  
José Alós Moya ◽  
Ignacio Payá Zaforteza ◽  
Antonio Hospitaler Pérez ◽  
José Aguado López

Author(s):  
Joon Young Yoon ◽  
Sung-In Park ◽  
Jae Bong Lee ◽  
Seungmin Kwon ◽  
Yoonsik Hwang

This work is motivated by the need to identify the fire and explosion risk on LNGCs developed by Daewoo Shipbuilding & Marine Engineering Co., Ltd. (DSME) because the main engines are designed to use highly pressurized natural gas (about 300 bar), which has caused vague fears of fire and explosion risks. In this context, to identify the risk of fires and explosions quantitatively caused by ignitions of unintended leaked gas from fuel gas lines, a FERA was carried out for the LNGCs [1]. This paper, as a part of the FERA, presents the results of a preliminary investigation on the effect of introducing the highly pressured fuel gas system into LNGCs on the fire and explosion risk especially in the cargo compressor room. This study is conducted in a comparative way considering the risk contribution of each parameter that could impact on the fire and explosion risk in LNGCs. The effect of the highly pressured fuel gas is indirectly taken into account by the change of the initial leak rate in the system. To identify effects of the considered parameters quantitatively, dozens of simulations for the selected gas dispersion, explosion and fire scenarios were carried out using FLACS and KFX. Based on the results from the simulations, it is concluded that, in case of the LNGCs, the effects of the initial large leak rate due to the high pressure in the fuel gas pipes on fire and explosion risk are not significant compared with the other parameters’ effects.


Sign in / Sign up

Export Citation Format

Share Document