Investigation of Wind Loads on Utility-Scale Seasonal Tilt Solar PV Power Plants

Author(s):  
Syed Abdul Mateen ◽  
Kiran S. Bhole
Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7434
Author(s):  
Luis Arribas ◽  
Yolanda Lechón ◽  
Alberto Perula ◽  
Javier Domínguez ◽  
Manuel Ferres ◽  
...  

Utility-scale hybrid wind–solar PV power plants (which might include some storage as well) are an attractive option for the transition of conventional grids to incorporate high renewable energy (RE) shares. Along with lower generation costs, they offer increased dispatch capabilities and flexible operation. However, when assessing their potential, they present higher needs in terms of input data, as they are forced to consider both spatial and temporal variations to evaluate their techno-economic viability, as well as other common inputs such as economic, social or environmental data. The availability of the different data influences the type of analysis to be implemented. The microgrid approach of segmenting the information into layers will be adopted for the classification of data. Three different levels of analysis are sought: long-term energy scenarios, geo-spatial planning, and production cost estimation. The analysis of necessary data for each planning stage, and the available data sources for the assessment of utility-scale hybrid power plants, under this microgrid approach, is the main focus of this review.


2017 ◽  
Author(s):  
Charles W. White ◽  
Walter Shelton ◽  
Nathan Weiland ◽  
Travis Shultz ◽  
John Plunkett ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 3364
Author(s):  
Amr Zeedan ◽  
Abdulaziz Barakeh ◽  
Khaled Al-Fakhroo ◽  
Farid Touati ◽  
Antonio S. P. Gonzales

Soiling losses of photovoltaic (PV) panels due to dust lead to a significant decrease in solar energy yield and result in economic losses; this hence poses critical challenges to the viability of PV in smart grid systems. In this paper, these losses are quantified under Qatar’s harsh environment. This quantification is based on experimental data from long-term measurements of various climatic parameters and the output power of PV panels located in Qatar University’s Solar facility in Doha, Qatar, using a customized measurement and monitoring setup. A data processing algorithm was deliberately developed and applied, which aimed to correlate output power to ambient dust density in the vicinity of PV panels. It was found that, without cleaning, soiling reduced the output power by 43% after six months of exposure to an average ambient dust density of 0.7 mg/m3. The power and economic loss that would result from this power reduction for Qatar’s ongoing solar PV projects has also been estimated. For example, for the Al-Kharasaah project power plant, similar soiling loss would result in about a 10% power decrease after six months for typical ranges of dust density in Qatar’s environment; this, in turn, would result in an 11,000 QAR/h financial loss. This would pose a pressing need to mitigate soiling effects in PV power plants.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4675
Author(s):  
Ayat-allah Bouramdane ◽  
Alexis Tantet ◽  
Philippe Drobinski

In this study, we examine how Battery Storage (BES) and Thermal Storage (TES) combined with solar Photovoltaic (PV) and Concentrated Solar Power (CSP) technologies with an increased storage duration and rental cost together with diversification would influence the Moroccan mix and to what extent the variability (i.e., adequacy risk) can be reduced; this is done using recent (2013) cost data and under various penetration scenarios. To do this, we use MERRA-2 climate reanalysis to simulate hourly demand and capacity factors (CFs) of wind, solar PV and CSP without and with increasing storage capabilities—as defined by the CSP Solar Multiple (SM) and PV Inverter Loading Ratio (ILR). We adjust these time series to observations for the four Moroccan electrical zones over the year 2018. Our objective is to maximize the renewable (RE) penetration and minimize the imbalances between RE production and consumption considering three optimization strategies. We analyze mixes along Pareto fronts using the Mean-Variance Portfolio approach—implemented in the E4CLIM model—in which we add a maximum-cost constraint to take into account the different rental costs of wind, PV and CSP. We propose a method to calculate the rental cost of storage and production technologies taking into account the constraints on storage associated with the increase of SM and ILR in the added PV-BES and CSP-TES modules, keeping the mean solar CFs fixed. We perform some load bands-reduction diagnostics to assess the reliability benefits provided by each RE technology. We find that, at low penetrations, the maximum-cost budget is not reached because a small capacity is needed. The higher the ILR for PV, the larger the share of PV in the mix compared to wind and CSP without storage is removed completely. Between PV-BES and CSP-TES, the latter is preferred as it has larger storage capacity and thus stronger impact in reducing the adequacy risk. As additional BES are installed, more than TES, PV-BES is favored. At high penetrations, optimal mixes are impacted by cost, the more so as CSP (resp., PV) with high SM (resp., ILR) are installed. Wind is preferably installed due to its high mean CF compared to cost, followed by either PV-BES or CSP/CSP-TES. Scenarios without or with medium storage capacity favor CSP/CSP-TES, while high storage duration scenarios are dominated by low-cost PV-BES. However, scenarios ignoring the storage cost and constraints provide more weight to PV-BES whatever the penetration level. We also show that significant reduction of RE variability can only be achieved through geographical diversification. Technological complementarity may only help to reduce the variance when PV and CSP are both installed without or with a small amount of storage. However, the diversification effect is slightly smaller when the SM and ILR are increased and the covariances are reduced as well since mixes become less diversified.


Author(s):  
Mantosh Kumar ◽  
Kumari Namrata ◽  
Akshit Samadhiya

Abstract As the exhaust rate of the conventional sources has geared up already, this is compelling the power industries to install the power plants based on the non-conventional sources so that future demand of the energy supply can be fulfilled. Among the various sources of renewable energy like wind, hydro, tidal etc., solar energy is the most easily accessible and available renewable energy source. Ensuring the feasibility of any energy source not only technical but also the economical perspective is the most important criteria. This paper has incorporated both the perspective and has done the techno-economic analysis to determine the optimum combination of the PV array size and battery size to minimize the overall electricity generation per unit. In this paper, a standalone solar PV system has been analyzed for the location of Jamshedpur, where an effort has been done to choose the optimum combination of the solar array and battery size within the desired range of LLP so that the electricity generation cost per unit can be minimized. The overall duration of the analysis has been done for a year and the outcome of the research has been verified with the help of MATLAB software.


Sign in / Sign up

Export Citation Format

Share Document