scholarly journals Utility-Scale PV-Battery versus CSP-Thermal Storage in Morocco: Storage and Cost Effect under Penetration Scenarios

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4675
Author(s):  
Ayat-allah Bouramdane ◽  
Alexis Tantet ◽  
Philippe Drobinski

In this study, we examine how Battery Storage (BES) and Thermal Storage (TES) combined with solar Photovoltaic (PV) and Concentrated Solar Power (CSP) technologies with an increased storage duration and rental cost together with diversification would influence the Moroccan mix and to what extent the variability (i.e., adequacy risk) can be reduced; this is done using recent (2013) cost data and under various penetration scenarios. To do this, we use MERRA-2 climate reanalysis to simulate hourly demand and capacity factors (CFs) of wind, solar PV and CSP without and with increasing storage capabilities—as defined by the CSP Solar Multiple (SM) and PV Inverter Loading Ratio (ILR). We adjust these time series to observations for the four Moroccan electrical zones over the year 2018. Our objective is to maximize the renewable (RE) penetration and minimize the imbalances between RE production and consumption considering three optimization strategies. We analyze mixes along Pareto fronts using the Mean-Variance Portfolio approach—implemented in the E4CLIM model—in which we add a maximum-cost constraint to take into account the different rental costs of wind, PV and CSP. We propose a method to calculate the rental cost of storage and production technologies taking into account the constraints on storage associated with the increase of SM and ILR in the added PV-BES and CSP-TES modules, keeping the mean solar CFs fixed. We perform some load bands-reduction diagnostics to assess the reliability benefits provided by each RE technology. We find that, at low penetrations, the maximum-cost budget is not reached because a small capacity is needed. The higher the ILR for PV, the larger the share of PV in the mix compared to wind and CSP without storage is removed completely. Between PV-BES and CSP-TES, the latter is preferred as it has larger storage capacity and thus stronger impact in reducing the adequacy risk. As additional BES are installed, more than TES, PV-BES is favored. At high penetrations, optimal mixes are impacted by cost, the more so as CSP (resp., PV) with high SM (resp., ILR) are installed. Wind is preferably installed due to its high mean CF compared to cost, followed by either PV-BES or CSP/CSP-TES. Scenarios without or with medium storage capacity favor CSP/CSP-TES, while high storage duration scenarios are dominated by low-cost PV-BES. However, scenarios ignoring the storage cost and constraints provide more weight to PV-BES whatever the penetration level. We also show that significant reduction of RE variability can only be achieved through geographical diversification. Technological complementarity may only help to reduce the variance when PV and CSP are both installed without or with a small amount of storage. However, the diversification effect is slightly smaller when the SM and ILR are increased and the covariances are reduced as well since mixes become less diversified.

2018 ◽  
Author(s):  
Ibraheam Al-Aali ◽  
Vijay Modi

Soaring electricity demand from space cooling and excellent solar photovoltaics (PV) resources are creating an opportunity for the financial viability of low-emission solutions in Qatar that can compete with existing approaches. This study examines the big picture viability of combining large utility-scale PV with decentralized building-scale ice storage for cooling in Qatar. Qatar is found to have consistently high repeatable solar radiation intensity that nearly matches space cooling requirement. A means to exploit the low installed costs of PV, combined with low cost and long lifetime of ice storage (as opposed to batteries) are examined to meet space cooling loads. Space cooling is responsible for about 65% of Qatar’s annual electric load (which averaged 4.68 GW in 2016). While multiple gas prices are considered, a scenario with the current gas price of $3.33/MMBTU, a PV system of 9.7 GW capacity and an aggregate ice-storage capacity of 4.5 GWh could reduce the gas-fired power generation in Qatar by nearly 39%. Here, gas-fired generation capacity to meet current load exists and hence is not costed.


Author(s):  
Maithili P ◽  
Kanakaraj J

The power demand is increased day by day and generation of electrical energy from non-renewable sources are not able to meet the demand. An alternate energy sources are the only solution to meet the power demand. The power generation from solar energy with photovoltaic effect is plays a major role. This Solar PV system has low efficiency. The power semiconductor devices and converter circuit along with inductive / magnetic circuit. The Inverter circuit have an influence on photovoltaic power generation to improve the level of output voltage along with efficiency. In this paper a new transformer less DC-AC converter is proposed, and it has high efficiency, requires less cost when compares with conventional inverter with transformer. Transformer less self-commutated photovoltaic inverter is reflected the advantages of central and string inverters. It gives high output power and low-cost converter. These transformer less DC-AC converter is connect with Boost/Buck-Boost converter for the better output. So, this proposed DC-AC converter topology is not required mechanical switching and it is lighter in size. The PV technology has low efficiency and utilize more cost for generation of power. The proposed transformer less PV inverter is the better choice to increase the usefulness and reduce the charge rate of this PV system.


2021 ◽  
Vol 28 ◽  
pp. 107327482110099
Author(s):  
Abdosaleh Jafari ◽  
Peyman Mehdi Alamdarloo ◽  
Mehdi Dehghani ◽  
Peivand Bastani ◽  
Ramin Ravangard

Among cancers, colorectal cancer is the third most common cancer in the world and the fourth leading cause of cancer deaths worldwide. Some studies have shown that the incidence of colorectal cancer is increasing in Iran and in Fars province. The present study aimed to determine the economic burden of colorectal cancer in patients referred to the referral centers affiliated to Iran, Shiraz University of Medical Sciences in 2019 from the patients’ perspective. This is a partial economic evaluation and a cost-of-illness study conducted cross-sectionally in 2019. All the patients with colorectal cancer who had been referred to the referral centers affiliated to Iran, Shiraz University of Medical Sciences, and had medical records were studied through the census method (N = 96). A researcher-made data collection form was used to collect the cost data. The prevalence-based and bottom-up approaches were also used in this study. The human capital approach was applied to calculate indirect costs. The mean annual cost per patient with colorectal cancer in the present study was $10930.98 purchasing power parity (PPP) (equivalent to 5745.29 USD), the main part of which was the medical direct costs (74.86%). Also, among the medical direct costs per patient, the highest were those of surgeries (41.7%). In addition, the mean annual cost per patient with colorectal cancer in the country was $ 116917762 PPP (equivalent to 61451621.84 USD) in 2019. Regarding the considerable economic burden of colorectal cancer and in order to reduce the costs, these suggestions can be made: increasing the number of specialized beds through the cooperation of health donors, establishing free or low-cost accommodation centers for patients and their companions near the medical centers, using the Internet and cyberspace technologies to follow up the treatment of patients, and increasing insurance coverage and government drug subsidies on drug purchase.


2011 ◽  
Vol 1335 ◽  
Author(s):  
Qiong Wu ◽  
Juanyuan Hao ◽  
Shoulei Shi ◽  
Weifeng Wang ◽  
Nan Lu

ABSTRACTWe report a low-cost and high-throughput method to fabricate large-area light emitting pattern via thermal evaporation of organic molecules on the patterned self-assembled monolayer of homogenous 3-aminopropyltrimethoxysilane. This method is based on the selective deposition of the organic light emitting molecules on the template of self-assembled monolayer (SAM), which is patterned with nanoimprinting lithography. The selectivity can be controlled by adjusting the design of the pattern, the storage duration and the substrate temperature. The deposition selectivity of the molecules may be caused by the different binding energy of the molecules with the SAM and the substrate surface.


Author(s):  
Ankit Chaudhary ◽  
Virendra Deo Sinha ◽  
Sanjeev Chopra ◽  
Jitendra Shekhawat ◽  
Gaurav Jain

Abstract Background Cranioplasty is performed to repair skull defects and to restore normal skull anatomy. Optimal reconstruction remains a topic of debate. Autologous bone flap is the standard option but it may not be available due to traumatic bone fractures, bone infection, and resorption. The authors present their experience with prefabrication of precise and low-cost polymethyl methacrylate (PMMA) mold using three-dimensional (3D) digital printing. Methods A total of 30 patients underwent cranioplasty between March 2017 and September 2019 at Sawai Man Singh Medical College Jaipur, India. Preoperative data included diagnosis for which decompressive craniectomy was done and Glasgow coma scale score. Intraoperative data included operating time. Postoperative data included cosmetic outcome in the form of cranial contour and margins, complications such as infection, seroma, implant failure, wound dehiscence, and hematoma. Results Patient age at cranioplasty ranged from 12 to 63 years with a mean age of 36.7 years. The mean operating time was 151.6 minutes (range 130–190 minutes). The mean follow-up period was 8 months (range 6–13 months). Postoperative wound dehiscence developed in one case (3.3%). Cranial contour and approximation of the margins were excellent and aesthetic appearance improved in all patients. Conclusion Low-cost PMMA implant made by digital 3D printer mold is associated with reconstruction of the deformed skull contour giving satisfactory results to the patient and his family members, at a low cost compared with other commercially available implants. This technique could be a breakthrough in cranioplasty.


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


Sign in / Sign up

Export Citation Format

Share Document