Two-level planning approach to analyze techno-economic feasibility of hybrid offshore wind-solar pv power plants

2021 ◽  
Vol 47 ◽  
pp. 101509
Author(s):  
Syed Raahat Ara ◽  
Santanu Paul ◽  
Zakir Hussain Rather
2021 ◽  
Vol 280 ◽  
pp. 05016
Author(s):  
Waleed K. Al-Nassar ◽  
S. Neelamani ◽  
Teena Sara William

The worldwide environmental concern and awareness created a way towards the generation of pollution-free wind and solar renewable energies. Wind and Photovoltaic (PV) power plants of each 10 MW capacity located in the Shagaya area, west of Kuwait, were compared after one year of operation. The wind power plants recorded high capacity factors resulting in a yearly power production of 42.59 GWh, 21% higher than expected (contractual 31.160 GWh). It will reduce the emission of CO2 throughout the projected lifetime of 25 years by 118,303 tons. CAPEX (capital Expenditure) and OPEX (operation expenditure) were taken into consideration throughout the life of the plants along with investment costs resulting in a levelized cost of electricity (LCOE) for wind of 0.015 KWD/kWh or 0.046 USD/kWh, compared to 0.027 KWD/kWh or 0.082 USD/kWh for solar PV (44% lower than PV). Offshore, Boubyan Island, Northern Kuwait territorial waters, were found to be the foremost appropriate for wind energy generation, with Wind Power Density of more than 500 Watt/m2 in summer which is ideal for the high energy demanding season in Kuwait. The LCOE for offshore wind energy was 27.6 fils/kWh, compared to 39.3 fils/kWh for thermal power plants.


2019 ◽  
Vol 122 ◽  
pp. 02004 ◽  
Author(s):  
Javier Menéndez ◽  
Jorge Loredo

In 2017, electricity generation from renewable sources contributed more than one quarter (30.7%) to total EU-28 gross electricity consumption. Wind power is for the first time the most important source, followed closely by hydro power. The growth in electricity from photovoltaic energy has been dramatic, rising from just 3.8 TWh in 2007, reaching a level of 119.5 TWh in 2017. Over this period, the contribution of photovoltaic energy to all electricity generated in the EU-28 from renewable energy sources increased from 0.7% to 12.3%. During this period the investment cost of a photovoltaic power plant has decreased considerably. Fundamentally, the cost of solar panels and inverters has decreased by more than 50%. The solar photovoltaic energy potential depends on two parameters: global solar irradiation and photovoltaic panel efficiency. The average solar irradiation in Spain is 1,600 kWh m-2. This paper analyzes the economic feasibility of developing large scale solar photovoltaic power plants in Spain. Equivalent hours between 800-1,800 h year-1 and output power between 100-400 MW have been considered. The profitability analysis has been carried out considering different prices of the electricity produced in the daily market (50-60 € MWh-1). Net Present Value (NPV) and Internal Rate of Return (IRR) were estimated for all scenarios analyzed. A solar PV power plant with 400 MW of power and 1,800 h year-1, reaches a NPV of 196 M€ and the IRR is 11.01%.


2020 ◽  
Vol 18 (1) ◽  
pp. 17
Author(s):  
R. Reski Eka Putra ◽  
Susi Afriani ◽  
Nanda Putri Miefthawati ◽  
Marhama Jelita

ABSTRACTReliability of the electric power system and fulfil the certification of sustainable industries in the palm oil industry are offered by utilizing the potential of renewable energy sources as power plants. This research is aimed to analyze the technical and economic aspects of the Solar PV-Biogas power plant at PT. TBS. The method used in this research is hybrid parallel with the off grid network system. In manual calculations showed an optimal generating system consisting of an anaerobic digester with a lagoon capacity of 28,934.81 m3, 1,560 kW biogas generator, 4,040.22 kWp PV array, 2000 kW bidirectional inverter, and 10,125 units of batteries with capacity of 1,547Ah. Then the system is evaluated using HOMER Pro software with project lifetime of 20 years, and the total electricity production obtained during the life of the project is able to supply loads continuously with an average excess electricity about 25.23%/years of total production. Meanwhile, in the economic analysis of hybrid power plants require an initial investment (NPC) of Rp.233,553,169,589.30, with total CO2 emissions of POME 44,073.75 tons/year, then the cost of Certified Emission Reduction is obtained about Rp.6,611,062,500/year. The calculation of economic feasibility results in a Net Present Value of Rp.136.266.578.753, Payback Period of 13,8 years, and an Internal Rate of Return of 9,41%. Based on the result of techno-economic analysis in the research, it can be concluded that this hybrid generating system has the potential to be developed for study that is more detailed if it is to be implemented.Keywords: HOMER Pro, Off-grid, PT. TBS, Solar PV/Biogas, Techno-economic.


2021 ◽  
Vol 13 (6) ◽  
pp. 3364
Author(s):  
Amr Zeedan ◽  
Abdulaziz Barakeh ◽  
Khaled Al-Fakhroo ◽  
Farid Touati ◽  
Antonio S. P. Gonzales

Soiling losses of photovoltaic (PV) panels due to dust lead to a significant decrease in solar energy yield and result in economic losses; this hence poses critical challenges to the viability of PV in smart grid systems. In this paper, these losses are quantified under Qatar’s harsh environment. This quantification is based on experimental data from long-term measurements of various climatic parameters and the output power of PV panels located in Qatar University’s Solar facility in Doha, Qatar, using a customized measurement and monitoring setup. A data processing algorithm was deliberately developed and applied, which aimed to correlate output power to ambient dust density in the vicinity of PV panels. It was found that, without cleaning, soiling reduced the output power by 43% after six months of exposure to an average ambient dust density of 0.7 mg/m3. The power and economic loss that would result from this power reduction for Qatar’s ongoing solar PV projects has also been estimated. For example, for the Al-Kharasaah project power plant, similar soiling loss would result in about a 10% power decrease after six months for typical ranges of dust density in Qatar’s environment; this, in turn, would result in an 11,000 QAR/h financial loss. This would pose a pressing need to mitigate soiling effects in PV power plants.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ramhari Poudyal ◽  
Pavel Loskot ◽  
Ranjan Parajuli

AbstractThis study investigates the techno-economic feasibility of installing a 3-kilowatt-peak (kWp) photovoltaic (PV) system in Kathmandu, Nepal. The study also analyses the importance of scaling up the share of solar energy to contribute to the country's overall energy generation mix. The technical viability of the designed PV system is assessed using PVsyst and Meteonorm simulation software. The performance indicators adopted in our study are the electric energy output, performance ratio, and the economic returns including the levelised cost and the net present value of energy production. The key parameters used in simulations are site-specific meteorological data, solar irradiance, PV capacity factor, and the price of electricity. The achieved PV system efficiency and the performance ratio are 17% and 84%, respectively. The demand–supply gap has been estimated assuming the load profile of a typical household in Kathmandu under the enhanced use of electric appliances. Our results show that the 3-kWp PV system can generate 100% of electricity consumed by a typical residential household in Kathmandu. The calculated levelised cost of energy for the PV system considered is 0.06 $/kWh, and the corresponding rate of investment is 87%. The payback period is estimated to be 8.6 years. The installation of the designed solar PV system could save 10.33 tons of CO2 emission over its lifetime. Overall, the PV systems with 3 kWp capacity appear to be a viable solution to secure a sufficient amount of electricity for most households in Kathmandu city.


Author(s):  
Muhammadiya Rifqi ◽  
Heni Fitriani ◽  
Puteri Kusuma Wardhani

Buildings contribute more than 40% of world energy consumption, so it is feared that it will cause energy problems in thefuture, especially in the construction sector. One solution to reducing this problem is by analyzing energy use at the initialdesign stage and utilizing solar energy as one of the solar power plants (PLTS) in office buildings. To analyze the use ofenergy in buildings, Building Information Modeling (BIM) was used. The purpose of this research is to analyze the annualenergy level of office buildings in Palembang using BIM software, namely Autodesk Revit. The number of solar panels aswell as the amount of energy were also identified using web-based software (HelioScope) resulting the economic feasibilityas indicated by the installation of solar panels as a component of PV mini-grid. The results showed that the use of BIMtechnology in analyzing building energy can provide a detailed description of the building model at the design stage. Revitanalysis indicates that the building consumed electrical energy per year for about 3,647,713 kWh with a roof area of 1,657m2. In addition, based on the HelioScope analysis, the use of renewable energy from the installation of PLTS was 152,900kWh/year. Meanwhile, for economic feasibility analysis, the installation of PLTS in office buildings can provide a positive NetPresent Value (NPV), indicating a feasible project.


Author(s):  
Mantosh Kumar ◽  
Kumari Namrata ◽  
Akshit Samadhiya

Abstract As the exhaust rate of the conventional sources has geared up already, this is compelling the power industries to install the power plants based on the non-conventional sources so that future demand of the energy supply can be fulfilled. Among the various sources of renewable energy like wind, hydro, tidal etc., solar energy is the most easily accessible and available renewable energy source. Ensuring the feasibility of any energy source not only technical but also the economical perspective is the most important criteria. This paper has incorporated both the perspective and has done the techno-economic analysis to determine the optimum combination of the PV array size and battery size to minimize the overall electricity generation per unit. In this paper, a standalone solar PV system has been analyzed for the location of Jamshedpur, where an effort has been done to choose the optimum combination of the solar array and battery size within the desired range of LLP so that the electricity generation cost per unit can be minimized. The overall duration of the analysis has been done for a year and the outcome of the research has been verified with the help of MATLAB software.


Sign in / Sign up

Export Citation Format

Share Document