2012 ◽  
Author(s):  
Nurul A. Emran ◽  
Noraswaliza Abdullah ◽  
Nuzaimah Mustafa

2013 ◽  
pp. 97-116 ◽  
Author(s):  
A. Apokin

The author compares several quantitative and qualitative approaches to forecasting to find appropriate methods to incorporate technological change in long-range forecasts of the world economy. A?number of long-run forecasts (with horizons over 10 years) for the world economy and national economies is reviewed to outline advantages and drawbacks for different ways to account for technological change. Various approaches based on their sensitivity to data quality and robustness to model misspecifications are compared and recommendations are offered on the choice of appropriate technique in long-run forecasts of the world economy in the presence of technological change.


2019 ◽  
Vol 10 (2) ◽  
pp. 117-125
Author(s):  
Dana Kubíčková ◽  
◽  
Vladimír Nulíček ◽  

The aim of the research project solved at the University of Finance and administration is to construct a new bankruptcy model. The intention is to use data of the firms that have to cease their activities due to bankruptcy. The most common method for bankruptcy model construction is multivariate discriminant analyses (MDA). It allows to derive the indicators most sensitive to the future companies’ failure as a parts of the bankruptcy model. One of the assumptions for using the MDA method and reassuring the reliable results is the normal distribution and independence of the input data. The results of verification of this assumption as the third stage of the project are presented in this article. We have revealed that this assumption is met only in a few selected indicators. Better results were achieved in the indicators in the set of prosperous companies and one year prior the failure. The selected indicators intended for the bankruptcy model construction thus cannot be considered as suitable for using the MDA method.


Author(s):  
Jay Anderson ◽  
Mustafa Kansiz ◽  
Michael Lo ◽  
Curtis Marcott

Abstract Failure analysis of organics at the microscopic scale is an increasingly important requirement, with traditional analytical tools such as FTIR and Raman microscopy, having significant limitations in either spatial resolution or data quality. We introduce here a new method of obtaining Infrared microspectroscopic information, at the submicron level in reflection (far-field) mode, called Optical-Photothermal Infrared (O-PTIR) spectroscopy, that can also generate simultaneous Raman spectra, from the same spot, at the same time and with the same spatial resolution. This novel combination of these two correlative techniques can be considered to be complimentary and confirmatory, in which the IR confirms the Raman result and vice-versa, to yield more accurate and therefore more confident organic unknowns analysis.


Sign in / Sign up

Export Citation Format

Share Document