Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality

1993 ◽  
Vol 20 (3) ◽  
pp. 127-159 ◽  
Author(s):  
B. Berg ◽  
M. P. Berg ◽  
P. Bottner ◽  
E. Box ◽  
A. Breymeyer ◽  
...  
Plant Ecology ◽  
2009 ◽  
Vol 209 (2) ◽  
pp. 257-268 ◽  
Author(s):  
Guangping Xu ◽  
Yigang Hu ◽  
Shiping Wang ◽  
Zhenhua Zhang ◽  
Xiaofeng Chang ◽  
...  

1995 ◽  
Vol 73 (10) ◽  
pp. 1509-1521 ◽  
Author(s):  
Maj-Britt Johansson ◽  
Björn Berg ◽  
Vernon Meentemeyer

We investigated rate-regulating factors for decomposition rates of Scots pine needle litter at 22 sites over a 2000-km long transect ranging from the Arctic Circle in Scandinavia to northern continental Europe. We found very different patterns for rate-regulating factors in the early stages of decomposition as compared to later stages (> 20% accumulated mass loss). The initial decomposition rates (measured over the 1st year) ranged from about 10.9%/year close to the Arctic Circle to about 43.7%/year in south Sweden. The dominant rate-regulating factor was climate (average annual temperature, and actual evapotranspiration), and none of the substrate-quality factors was significant. In the later stages, the annual mass loss varied from 2.2%/year to 41.5%/year. The rate-regulating factors were climate and the litter's concentration of lignin. We found that the effect of lignin concentration on litter mass-loss rate varied with site and this relative effect was negatively related with actual evapotranspiration. The effect of lignin concentration on mass-loss rates near the Arctic Circle was thus low (at low values for actual evapotranspiration) whereas in Southern Sweden and on the continent the rate-regulating effect of lignin was higher. Key words: foliar litter, decomposition, lignin, climatic transect, rate-regulating factors, climate change.


2013 ◽  
Vol 19 (9) ◽  
pp. 2795-2803 ◽  
Author(s):  
Anja Vogel ◽  
Nico Eisenhauer ◽  
Alexandra Weigelt ◽  
Michael Scherer-Lorenzen

1993 ◽  
Vol 71 (5) ◽  
pp. 680-692 ◽  
Author(s):  
Björn Berg ◽  
Charles McClaugherty ◽  
Maj-Britt Johansson

The patterns of some chemical changes and litter mass-loss rates were investigated for a variety of types of decomposing litter in pine forests under different climatic conditions and at sites with different nutrient status. A mixed deciduous forest was also compared. In initially chemically identical Scots pine needle litter incubated under different climatic conditions, the lignin concentration increased faster as a function of accumulated mass loss when the climatic conditions promoted a higher initial mass-loss rate. Also under artificially created conditions, e.g., after fertilization and irrigation, the same phenomenon occurred. Litter mass-loss rates decreased during decomposition as lignin concentrations increased. The relative decrease was significantly larger at sites with a climate that promoted an initially higher mass-loss rate. At the same lignin concentration, however, the mass-loss rate was significantly lower in drier and colder conditions, viz. climatic conditions that promote a lower initial mass-loss rate. Nevertheless, at very high lignin concentrations that lignin clearly dominated over climate as a rate-regulating factor. A possible consequence of this observation could be a higher rate of organic matter accumulation at sites that initially promote a high initial mass-loss rate for litter than at sites with conditions that give lower initial rates, at least for a given species of litter. Key words: litter, decomposition, lignin, chemical changes, climatic transect, effect of climate change.


Ecosystems ◽  
2021 ◽  
Author(s):  
Janna Wambsganss ◽  
Grégoire T. Freschet ◽  
Friderike Beyer ◽  
Jürgen Bauhus ◽  
Michael Scherer-Lorenzen

AbstractDecomposition of dead fine roots contributes significantly to nutrient cycling and soil organic matter stabilization. Most knowledge of tree fine-root decomposition stems from studies in monospecific stands or single-species litter, although most forests are mixed. Therefore, we assessed how tree species mixing affects fine-root litter mass loss and which role initial litter quality and environmental factors play. For this purpose, we determined fine-root decomposition of 13 common tree species in four European forest types ranging from boreal to Mediterranean climates. Litter incubations in 315 tree neighborhoods allowed for separating the effects of litter species from environmental influences and litter mixing (direct) from tree diversity (indirect). On average, mass loss of mixed-species litter was higher than those of single-species litter in monospecific neighborhoods. This was mainly attributable to indirect diversity effects, that is, alterations in microenvironmental conditions as a result of tree species mixing, rather than direct diversity effects, that is, litter mixing itself. Tree species mixing effects were relatively weak, and initial litter quality and environmental conditions were more important predictors of fine-root litter mass loss than tree diversity. We showed that tree species mixing can alter fine-root litter mass loss across large environmental gradients, but these effects are context-dependent and of moderate importance compared to environmental influences. Interactions between species identity and site conditions need to be considered to explain diversity effects on fine-root decomposition.


Pedobiologia ◽  
2019 ◽  
Vol 75 ◽  
pp. 38-51 ◽  
Author(s):  
Eduardo Nascimento ◽  
Filipa Reis ◽  
Filipe Chichorro ◽  
Cristina Canhoto ◽  
Ana Lúcia Gonçalves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document