The influence of fertilizers on root rot of field peas caused by Fusarium oxysporum, Pythium vexans and Rhizoctonia solani inoculated singly or in combination

1991 ◽  
Vol 132 (1) ◽  
pp. 21-27 ◽  
Author(s):  
M. Srihuttagum ◽  
K. Sivasithamparam
1993 ◽  
Vol 73 (1) ◽  
pp. 365-367 ◽  
Author(s):  
J. C. Tu ◽  
S. J. Park

A bean (Phaseolus vulgaris) line, A - 300, resistant to Rhizoctonia solani and Fusarium oxysporum was introduced into Ontario from Colombia. The results of tests conducted in a root-rot nursery, in a greenhouse and in a growth room showed that this bean line is resistant to Fusarium solani f. sp. phaseoli and Pythium ultimum. Key words: Bean, Phaseolus vulgaris, root rot resistance


2021 ◽  
Vol 11 ◽  
Author(s):  
Luz Maria Serrano-Jamaica ◽  
Emiliano Villordo-Pineda ◽  
Mario Martín González-Chavira ◽  
Ramón Gerardo Guevara-González ◽  
Gabriela Medina-Ramos

Chili pepper (Capsicum annuum L.) production is affected by wilt and root rot, the most devastating disease caused by the pathogen complex of oomycete Phytophthora capsici Leon and the fungi Fusarium oxysporum Schlecht and Rhizoctonia solani Kühn, infecting roots, stems, leaves, and fruits. Fungicides are currently inefficient against this disease and have a high environmental impact. The use of elicitors is a sustainable alternative for inducing resistance to wilting and root rot. DNA fragments of an organism’s own origin (conspecific or self-DNA) have shown the ability to inhibit growth and activate defense mechanisms in some plant species. In this investigation, the effect of the fragmented DNA mixture of Phytophthora capsici L., Fusarium oxysporum S., and Rhizoctonia solani K. on the protection against wilt and root rot of Capsicum annuum L. plants was evaluated. Changes in plant performance, phenolics, and flavonoids contents, as well as gene expression involved in the production of defense metabolites after the fragmented and unfragmented DNA mixture in three concentrations (20, 60, and 100 μg mL–1) in chili peppers, were studied. The results obtained showed a decrease in plant height in 60 and 100 μg mL–1 concentrations in absence of pathogens. Moreover, the treatment with fragmented DNA 100 μg mL–1 showed significant increase in the content of phenolic compounds and total flavonoids as well as gene expression associated to plant defense in comparison with control plants. Interestingly, foliar application of DNA fragments of the pathogen complex to a concentration of 100 μg mL–1 caused a 40% decrease in the mortality of infected plants with the pathogens at 30 days post-inoculation compared with control plants inoculated with the pathogen complex but not sprayed with DNA fragments. These results suggested a perspective for application of fragmented DNA of these pathogens at the agricultural level in crop protection strategies to cope with wilt and root rot in Capsicum.


2011 ◽  
Vol 5 (2) ◽  
pp. 62-74 ◽  
Author(s):  
Gh. Hassan Dar ◽  
M.A. Beig ◽  
F.A. Ahanger ◽  
Nadeem A. Ganai ◽  
M. Ashraf Ahangar

Plant Disease ◽  
2020 ◽  
Vol 104 (4) ◽  
pp. 1254
Author(s):  
B. H. Lu ◽  
Z. Wang ◽  
G. J. Yi ◽  
G. W. Tan ◽  
F. Zeng ◽  
...  

1978 ◽  
Vol 56 (21) ◽  
pp. 2773-2780 ◽  
Author(s):  
R. N. Ames ◽  
R. G. Linderman

Easter lily bulbs were inoculated in the greenhouse with pot-culture inoculum containing a mixture of four vesicular–arbuscular (VA) mycorrhizal fungi as well as other fungi and bacteria, including pathogens. These organisms had multiplied in association with roots of lily, onion, and clover in pot cultures inoculated with sievings from lily field soils. Growth, as measured by bulb weight gain, root volume, and total leaf area, was determined on lily bulb plants inoculated at two inoculum levels and grown under three fertilizer regimes. Growth of plants inoculated with pot-culture inoculum was less than that of controls, especially in plants given the high inoculum (which included pot-culture plant roots) and the high rate of fertilization. The growth reduction apparently was due to the combined effect of greater incidence of Fusarium oxysporum root rot infections, damage to roots from fertilizer, and lower incidence of VA mycorrhizal infections. More mycorrhizal infections occurred in the low-fertilizer treatment than in the high- or no-fertilizer treatments at both high and low inoculum levels, but more F. oxysporum root rot occurred in the high-inoculum, high-fertilizer treatment.In a second experiment, lily seedlings that lacked bulb nutrient reserves were grown at a low fertilizer level and inoculated with Acaulospora trappei without any pathogens. Mycorrhizal plants were significantly larger than nonmycorrhizal control plants, and their tissues contained more N, P, K, Ca, and Mg than control plant tissues.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2650-2650
Author(s):  
S. Ma ◽  
Z. Cao ◽  
Q. Qu ◽  
N. Liu ◽  
M. Xu ◽  
...  

Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2427-2433 ◽  
Author(s):  
Sahar Arabiat ◽  
Mohamed F. R. Khan

Rhizoctonia damping-off and crown and root rot caused by Rhizoctonia solani are major diseases of sugar beet (Beta vulgaris L.) worldwide, and growers in the United States rely on fungicides for disease management. Sensitivity of R. solani to fungicides was evaluated in vitro using a mycelial radial growth assay and by evaluating disease severity on R. solani AG 2-2 inoculated plants treated with fungicides in the greenhouse. The mean concentration that caused 50% mycelial growth inhibition (EC50) values for baseline isolates (collected before the fungicides were registered for sugar beet) were 49.7, 97.1, 0.3, 0.2, and 0.9 μg ml−1 and for nonbaseline isolates (collected after registration and use of fungicides) were 296.1, 341.7, 0.9, 0.2, and 0.6 μg ml−1 for azoxystrobin, trifloxystrobin, pyraclostrobin, penthiopyrad, and prothioconazole, respectively. The mean EC50 values of azoxystrobin, trifloxystrobin, and pyraclostrobin significantly increased in the nonbaseline isolates compared with baseline isolates, with a resistant factor of 6.0, 3.5, and 3.0, respectively. Frequency of isolates with EC50 values >10 μg ml−1 for azoxystrobin and trifloxystrobin increased from 25% in baseline isolates to 80% in nonbaseline isolates. Although sensitivity of nonbaseline isolates of R. solani to quinone outside inhibitors decreased, these fungicides at labeled rates were still effective at controlling the pathogen under greenhouse conditions.


2018 ◽  
Vol 153 (4) ◽  
pp. 1237-1257 ◽  
Author(s):  
Samia Ageeb Akladious ◽  
Eman Zakaria Gomaa ◽  
Omima Mohammed El-Mahdy

Sign in / Sign up

Export Citation Format

Share Document