Effect of dual inoculation of Douglas fir with the ectomycorrhizal fungus Laccaria laccata and mycorrhization helper bacteria (MHB) in two bare-root forest nurseries

1991 ◽  
Vol 138 (2) ◽  
pp. 169-176 ◽  
Author(s):  
R. Duponnois ◽  
J. Garbaye

2000 ◽  
Vol 30 (3) ◽  
pp. 360-371 ◽  
Author(s):  
M -A Selosse ◽  
D Bouchard ◽  
F Martin ◽  
F Le Tacon

In the Saint-Brisson experiment conducted in central France, the American strain of the ectomycorrhizal fungus Laccaria bicolor (Maire) P.D. Orton S238N and the French strain L. bicolor 81306 inoculated on containerized Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings increased by 60% the total volume of wood produced 8 years after outplanting as compared with uninoculated but naturally mycorrhizal trees. The two strains introduced 10 years before in the inoculated plots are still present and dominant; they did not prevent the colonization of Douglas-fir roots by naturally occurring ectomycorrhizal fungi but allowed for the establishment of a very diversified symbiotic microflora. Eight to 12 years after outplanting, all the Douglas-fir plots were colonized by Laccaria laccata (Scop.:Fr.) Cooke or L. bicolor strains, as well as some other species, independently of the nursery treatments. With one exception in one plot, the presence of indigenous genets in the control treatments may have prevented the vegetative colonization of the inside of the noninoculated plots by the two introduced strains.



1999 ◽  
Vol 31 (11) ◽  
pp. 1555-1562 ◽  
Author(s):  
Pascale Frey-Klett ◽  
Jean-Louis Churin ◽  
Jean-Claude Pierrat ◽  
Jean Garbaye


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 744-748 ◽  
Author(s):  
Jerry E. Weiland ◽  
Bryan R. Beck ◽  
Anne Davis

Pythium species are common soilborne oomycetes that occur in forest nursery soils throughout the United States. Numerous species have been described from nursery soils. However, with the exception of P. aphanidermatum, P. irregulare, P. sylvaticum, and P. ultimum, little is known about the potential for other Pythium species found in nursery soils to cause damping-off of tree seedlings. A greenhouse study was conducted to evaluate the pathogenicity and virulence of 44 Pythium isolates representing 16 species that were originally recovered from soil at three forest nurseries in Washington and Oregon. Seeds of Douglas-fir (Pseudotsuga menziesii) were planted into soil infested with each of the isolates. Seedling survival, the number of surviving seedlings with necrotic root lesions, and taproot length were evaluated 4 weeks later. Responses of Douglas-fir to inoculation varied significantly depending on Pythium species and isolate. Eight species (P. dissotocum, P. irregulare, P. aff. macrosporum, P. mamillatum, P. aff. oopapillum, P. rostratifingens, P. sylvaticum, and P. ultimum var. ultimum) significantly reduced the number of surviving seedlings compared to the noninoculated treatment. However, all Pythium species caused a greater percentage of seedlings to develop root lesions (total mean 40%) than was observed from noninoculated seedlings (17%). Taproot length varied little among Pythium treatments and was not a useful character for evaluating pathogenicity. Results confirm the ability of P. irregulare, P. mamillatum, and P. ultimum var. ultimum to cause damping-off of Douglas-fir seedlings, and are indicative that other species such as P. dissotocum, P. aff. macrosporum, P. aff. oopapillum, P. rostratifingens, and P. sylvaticum may also be responsible for seedling loss.





1999 ◽  
Vol 77 (8) ◽  
pp. 1053-1076 ◽  
Author(s):  
H B Massicotte ◽  
R Molina ◽  
L E Tackaberry ◽  
J E Smith ◽  
M P Amaranthus

Seedlings of Abies grandis (Dougl.) Lindl. (grand fir), Lithocarpus densiflora (Hook. & Arn.) Rehd. (tanoak), Pinus ponderosa Dougl. ex Laws. (ponderosa pine), Pseudotsuga menziesii (Mirb.) Franco (Douglas-fir), and Arbutus menziesii Pursh (madrone) were planted in mixture and monoculture in soil collected from three adjacent forest sites in southwestern Oregon (a clearcut area, a 25-year-old Douglas-fir plantation, and a mature 90- to 160-year-old Douglas-fir - pine forest) to determine the effect of host tree diversity on retrieval of ectomycorrhizal morphotypes. In this greenhouse bioassay, 18 morphotypes of mycorrhizae were recognized overall from all soils with a total of 55 host-fungus combinations: 14 types with ponderosa pine, 14 with Douglas-fir, 10 with tanoak, 10 with grand fir, and 7 for madrone. Four genus-specific morphotypes were retrieved (three on ponderosa pine and one on Douglas-fir), even in mixture situations, demonstrating selectivity of some fungal propagules by their respective host. Five types were detected on all hosts, but not necessarily in soils from all sites. The remaining nine types were associated with two, three, or four hosts, which indicates a wide potential for interspecific hyphal linkages between trees. More morphotypes were retrieved from the monoculture treatments compared with the mixture treatments, although the differences were not significant. Several examples of acropetal replacement of one fungus by another (interpreted as succession) were recorded on all hosts during the course of the experiment. These results illustrate the importance of different host species in maintaining ectomycorrhizal fungus diversity, especially fungi with restricted host range, and the strong potential for fungal linkages between trees in forest ecosystems.Key words: fungal succession, fungal communities, compatibility, Arbutus menziesii, Pseudotsuga menziesii, Pinus ponderosa, Abies grandis, Lithocarpus densiflora.



CERNE ◽  
2017 ◽  
Vol 23 (2) ◽  
pp. 241-248
Author(s):  
Gerusa Pauli Kist Steffen ◽  
Ricardo Bemfica Steffen ◽  
Rosana Matos de Morais ◽  
Cleber Witt Saldanha ◽  
Joseila Maldaner ◽  
...  

ABSTRACT Ectomycorrhizal fungal inoculation in forestry seedlings aids plant establishment and growth in the field. The objectives of this study were: to determine the mycorrhizal capacity of the ectomycorrhizal fungus Scleroderma citrinum in Parapiptadenia rigida (red angico) seedlings and to evaluate the viability of a mycorrhizal inoculation technique for forest seedlings involving the use of spores. Mature spores were inoculated in the substrate (75% soil and 25% carbonized rice husk), totaling 1.5 grams of fungal spores per liter of substrate. P. rigida seeds were sown in substrates inoculated or not inoculated with fungal spores in presence or absence of Pinus echinata and Eucalyptus citriodora essential oil: not inoculated (T1), inoculated (T2), inoculated more pine essential oil (T3), inoculated more eucalyptus essential oil (T4). Seedlings of Pinus elliottii were used for a positive control of mycorrhizal inoculation (T5) and not inoculated (T6) with fungal spores. At 90 days after sowing, the base stem diameter, height, fresh and dry weight of shoots and roots, percentage of root colonization and Dickson Index were determined. The presence of fungal structures in P. rigida and P. elliottii roots inoculated with S. citrinum spores was observed, demonstrating the occurrence of an ectomycorrhizal association. The application of pine and eucalyptus essential oils in the substrate increased the percentage of ectomycorrhizal colonization in P. rigida seedlings. The addition of S. citrinum mature spores in the substrate used for seedling production is a viable practice for ectomycorrhizal inoculation and it can be used in forest nurseries in controlled mycorrhization programs.



Sign in / Sign up

Export Citation Format

Share Document