The impact of alley cropping Gliricidia sepium and Cassia spectabilis on upland rice and maize production

1992 ◽  
Vol 20 (3) ◽  
pp. 213-228 ◽  
Author(s):  
R. H. Maclean ◽  
J. A. Litsinger ◽  
K. Moody ◽  
A. K. Watson
2001 ◽  
Vol 1 ◽  
pp. 90-95 ◽  
Author(s):  
Abdul R. Bah ◽  
Zaharah A. Rahman

Use of cheap, N-rich, and environmentally benign legume green manures to correct N deficiency in infertile soils is a very attractive option in the humid tropics. Understanding the influence of management and climate on their effectiveness, and quantifying their contribution to crop productivity, is therefore crucial for technology adoption and adaptation. Mineral N buildup and the contribution to N uptake in maize were studied in an Ultisol amended with fresh Gliricidia leaves. Net mineral N accumulation was compared in mulched and incorporated treatments in a field incubation study. The 15N isotope dilution technique was used to quantify N supplied to maize by Gliricidia leaves in an alley cropping. Mineral N accumulation was slow, but was much greater after incorporation than after mulching. Also, N buildup was always higher in the topsoil (0 to 10 cm) than in the subsoil (10 to 20 cm). More NO3-N was leached than NH4-N, and the effect was greater in the incorporated treatment. Surface-applied Gliricidia leaves significantly increased N uptake by maize, and supplied >30% of the total N in the stover and >20% of that in the corn grain, even in the presence of hedgerows. Thus Gliricidia leaf mulch has immense potential to improve productivity in tropical soils.


2016 ◽  
Vol 25 (1) ◽  
pp. 69 ◽  
Author(s):  
Yayan Apriana ◽  
Erni Susanti ◽  
NFn Suciantini ◽  
Fadhlullah Ramadhani ◽  
Elza Surmaini

<p>Changes in the frequency and severity of extreme climate events and in the variability of weather patterns will have significant consequences for stability of agricultural system. Research objectives were to a) analyze the Impact of Climate Change on Food Crops in Dryland b) develop a software prototype analysis of the impact of climate change on food production, especially upland rice and maize on dry land; c) create a simulation with multiple scenarios of the impact of climate change on dry land. The study was conducted in South Sulawesi, West Nusatenggara and East Nusatenggara.The activities were carried out by projecting precipitation using scenarios: a) SRESA2 (Scenarios of climate change by assuming economic growth is lower and population growth remains high so the rate of greenhouse gas emissions increased, b) SRESB1 (scenario of climate change by assuming mitigation efforts through expanding efficient use of energy and technology improvements so that the emission levels are lower) and making projections of production of upland rice and maize using Decission Support System for Agrotechnology Transfer (DSSAT) as resource information in the preparation of prototype software information Systems Climate Change Impacts on Crop Production (SIDaPi TaPa). The system was built based on the analysis simulation model projections of production output DSSAT. Based on SRES scenarios A2, the decline in rainfall increased until 2050 in several districts, in South Sulawesi, West Nusatenggara and East Nusatenggara.Treatment of adaptation through SRESB1 scenarios could be effective to anticipate a decrease in rainfall in some regions, either in 2025 or 2050. In general, the region experiencing a decrease in rainfall will also decrease in production of both upland rice and maize production. The decline in upland rice production by SRESA2 scenario until 2050 was between 20-25%, and by a scenario adaptation SRESB1 the decline in production could be minimized to only between 7 -10%.The decline in maize production in the plot until 2050 by SRESA2 was between 9-15%, using scenarios to reduce production SRESB1 was only 5-8%. SIDAPI TAPA is a software analysis of the impact of climate change on food production, especially upland rice and maize on dry land in South Sulawesi, West Nusatenggara and East Nusatenggara.</p>


2003 ◽  
Vol 94 (3) ◽  
pp. 275-288 ◽  
Author(s):  
R.H. MacLean ◽  
J.A. Litsinger ◽  
K. Moody ◽  
A.K. Watson ◽  
E.M. Libetario

2010 ◽  
pp. 41-49
Author(s):  
Md Abiar Rahman ◽  
Md Giashuddin Miah ◽  
Hisashi Yahata

Productivity of maize and soil properties change under alley cropping system consisting of four woody species (Gliricidia sepium, Leucaena leucocephala, Cajanus cajan and Senna siamea) at different nitrogen levels (0, 25, 50, 75 and 100% of recommended rate) were studied in the floodplain ecosystem of Bangladesh. Comparative growth performance of four woody species after pruning showed that L. leucocephala attained the highest height, while C. cajan produced the maximum number of branches. Higher and almost similar amount of pruned materials (PM) were obtained from S. siamea, G. sepium and C. cajan species. In general, maize yield increased with the increase in N level irrespective of added PM. However, 100% N plus PM, 75% N plus PM and 100% N without PM (control) produced similar yields. The grain yield of maize obtained from G. sepium alley was 2.82, 4.13 and 5.81% higher over those of L. leucocephala, C. cajan and S. siamea, respectively. Across the alley, only one row of maize in the vicinity of the woody species was affected significantly. There was an increasing trend in soil properties in terms of organic C, total N and CEC in alley cropping treatments especially in G. sepium and L. leucocephala alleys compared to the initial and control soils. Therefore, one fourth chemical N fertilizer can be saved without significant yield loss in maize production in alley cropping system.


2008 ◽  
Vol 56 (2) ◽  
pp. 169-178
Author(s):  
U. Sangakkara ◽  
S. Nissanka ◽  
P. Stamp

Smallholders in the tropics add different organic materials to their crops at different times, based on the availability of materials and labour. However, the time of application could have an effect on the establishment and early growth of crops, especially their root systems, which has not yet been clearly identified. This paper presents the results of a study conducted under greenhouse conditions using soils from a field treated with three organic materials at 4 or 2 weeks before or at the planting of maize seeds, corresponding to the times that tropical smallholders apply these materials. The organic materials used were leaves of Gliricidia sepium and Tithonia diversifolia or rice straw, incorporated at a rate equivalent to 6 Mt ha −1 . A control treatment where no organic matter was added was used for comparison. The impact of the treatments on soil properties at the planting of maize seed and detailed root analysis based on root lengths were carried out until the last growth stage (V4). The addition of organic matter improved the soil characteristics, and the impact of adding Gliricidia leaves was most pronounced when incorporated 2 weeks before planting. The benefits of leaves of Tithonia or rice straw on soil quality parameters were clearly evident when added 4 weeks before planting. Organic matter enhanced the root number, root length, root growth rate and branching indices. All the organic materials suppressed the growth of maize roots when applied at planting, suggesting the existence of allelopathic effects, which could result in poor growth. The most benefits in terms of root growth were observed with Tithonia .


2020 ◽  
Vol 15 (1) ◽  
pp. 68-80
Author(s):  
Shun Chonabayashi ◽  
◽  
Theepakorn Jithitikulchai ◽  
Yeqing Qu ◽  
◽  
...  

The adverse effects of weather extremes produce widespread damage and cause severe alterations in the normal functioning of household agricultural production in Zambia. Extreme weather events such as floods and drought are expected to increase in intensity and frequency due to climate change. Coupled with high poverty levels and limited institutional capacity, the country is highly vulnerable to the impact of extreme events. We quantify the effects of economic diversification on agricultural productivity of poor farm households with a skew-normal regression approach while accounting for drought and flood shocks. Our analysis finds that economic diversification is a strategy to increase agricultural productivity and mitigate the adverse impact of droughts and floods on agricultural households. The results also support the country's policies to encourage hybrid maize production and to provide crop seeds and fertiliser to poor farmers. This paper provides a framework to plan and inform interventions to enhance household economic resilience to weather shocks through agricultural diversification in Zambia and other countries.


2017 ◽  
Vol 17 ◽  
pp. 139-154 ◽  
Author(s):  
A. Araya ◽  
I. Kisekka ◽  
X. Lin ◽  
P.V. Vara Prasad ◽  
P.H. Gowda ◽  
...  

2020 ◽  
Vol 743 ◽  
pp. 140770 ◽  
Author(s):  
Ahmed Elbeltagi ◽  
Muhammad Rizwan Aslam ◽  
Anurag Malik ◽  
Behrouz Mehdinejadiani ◽  
Ankur Srivastava ◽  
...  

Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 636
Author(s):  
Robson da Costa Leite ◽  
José Geraldo Donizetti dos Santos ◽  
Rubson da Costa Leite ◽  
Luciano Fernandes Sousa ◽  
Guilherme Octávio de Sousa Soares ◽  
...  

This study aimed to evaluate the growth, production, and leaf contents of macronutrients, as well as the yield of forage sorghum cultivated on the alleys of Gliricidia (Gliricidia sepium (Jacq.) Kunth ex Walp.) and Leucaena (Leucaena leucocephala (Lam.) de Wit) in the presence and absence of mineral fertilization. The experiment was conducted in two different periods: During the 2016/2017 double crop (cultivation carried out at the end of the crop cycle) and during the 2017/2018 crop (cultivation carried out at the beginning of the crop cycle). A randomized block design, in which the first factor refers to cultivation systems (single sorghum, sorghum cultivated in Gliricidia alleys, and sorghum cultivated in Leucaena alleys) and the second factor refers to mineral fertilization (presence and absence of fertilization), in a 3 × 2 factorial arrangement was used. The leguminous plants were cut, and the residues were deposited in the alleys. The cultivation in alleys without mineral fertilization increased total forage biomass when compared to the single crop cultivation. Cultivation in Leucaena alleys showed a higher leaf content of nitrogen (N) when compared to the single crop, both in the presence and absence of mineral fertilization. In the double crop, sorghum cultivated in Leucaena alleys without fertilization presented a higher forage yield (up to 67%) when compared to the single crop system. However, there was no difference in yield when mineral fertilization was applied to the treatments. Overall, the alley crops were able to increase the morphological (plant height (PH), stem diameter (SD), panicle diameter (PD), and panicle length (PL) and yield (leaf dry mass (LDM), stem dry mass (SDM), total green mass (TGM), and total dry mass TDM) variables of the crop, improving the productivity of forage sorghum.


Sign in / Sign up

Export Citation Format

Share Document