Estimation of the average surface heat flux over an inhomogeneous terrain from the vertical velocity variance

1987 ◽  
Vol 39 (1-2) ◽  
pp. 87-91
Author(s):  
M. D. Eilts ◽  
A. Sundara-Rajan ◽  
R. J. Evans
2009 ◽  
Vol 66 (2) ◽  
pp. 412-431 ◽  
Author(s):  
Rob Stoll ◽  
Fernando Porté-Agel

Abstract Large-eddy simulation, with recently developed dynamic subgrid-scale models, is used to study the effect of heterogeneous surface temperature distributions on regional-scale turbulent fluxes in the stable boundary layer (SBL). Simulations are performed of a continuously turbulent SBL with surface heterogeneity added in the form of streamwise transitions in surface temperature. Temperature differences between patches of 6 and 3 K are explored with patch length scales ranging from one-half to twice the equivalent homogeneous boundary layer height. The surface temperature heterogeneity has important effects on the mean wind speed and potential temperature profiles as well as on the surface heat flux distribution. Increasing the difference between the patch temperatures results in decreased magnitude of the average surface heat flux, with a corresponding increase in the mean potential temperature in the boundary layer. The simulation results are also used to test existing models for average surface fluxes over heterogeneous terrain. The tested models fail to fully represent the average turbulent heat flux, with models that break the domain into homogeneous subareas grossly underestimating the heat flux magnitude over patches with relatively colder surface temperatures. Motivated by these results, a new parameterization based on local similarity theory is proposed. The new formulation is found to correct the bias over the cold patches, resulting in improved average surface heat flux calculations.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 622 ◽  
Author(s):  
Seung-Bu Park ◽  
Jong-Jin Baik ◽  
Beom-Soon Han

The role of wind shear in the decay of the convective boundary layer (CBL) is systematically investigated using a series of large-eddy simulations. Nine CBLs with weak, intermediate, and strong wind shear are simulated, and their decays after stopping surface heat flux are investigated. After the surface heat flux is stopped, the boundary-layer-averaged turbulent kinetic energy (TKE) stays constant for almost one convective time scale and then decreases following a power law. While the decrease persists until the end of the simulation in the buoyancy-dominated (weak-shear) cases, the TKE in the other cases decreases slowly or even increases to a level which can be maintained by wind shear. In the buoyancy-dominated cases, convective cells occur, and they decay and oscillate over time. The oscillation of vertical velocity is not distinct in the other cases, possibly because wind shear disturbs the reversal of vertical circulations. The oscillations are detected again in the profiles of vertical turbulent heat flux in the buoyancy-dominated cases. In the strong-shear cases, mechanical turbulent eddies are generated, which transport heat downward in the lower boundary layers when convective turbulence decays significantly. The time series of vertical velocity skewness demonstrates the shear-dependent flow characteristics of decaying CBLs.


Author(s):  
Sajjad Bigham ◽  
Saeed Moghaddam

In this study, the physics of microscale heat transfer events at the wall-fluid interface during the growth of a moving bubble in a microchannel is analyzed. The study is enabled through development of a novel device that utilizes 53 microscale platinum resistance temperature detectors (RTDs) embedded in a composite substrate made of a high thermal conductivity material coated by a thin layer of a low thermal conductivity material. This sensors arrangement enables resolving the thermal field at the bubble-wall interface with unprecedented spatial and temporal resolutions of 40–65 μm and 50 μs, respectively. To prevent random bubble inception, a 300 nm in diameter cavity is fabricated using a focused ion beam (FIB) at the center of a pulsed function microheater. A detailed analysis of the surface heat transfer events and their relations to time scale of formation and dimensions of bubbles are conducted to decipher the underlying physics of the flow boiling process. Experimental results show that four mechanisms of heat transfer are active as a bubble grows and flows through the channel. These mechanisms of heat transfer are 1) microlayer evaporation, 2) interline evaporation, 3) transient conduction, and 4) micro-convection. The results suggest that the average surface heat flux enhances as the bubble grows in size resulting in expansion of the surface area over which the thin film evaporation mechanism is active. Above a certain bubble size, the average surface heat flux declines due to the formation of a dry region at the bubble-wall interface. Hence, the results indicate that there is an optimal bubble length at which the average surface heat flux is maximum.


2020 ◽  
pp. 35-42
Author(s):  
Yuri P. Zarichnyak ◽  
Vyacheslav P. Khodunkov

The analysis of a new class of measuring instrument for heat quantities based on the use of multi-valued measures of heat conductivity of solids. For example, measuring thermal conductivity of solids shown the fallacy of the proposed approach and the illegality of the use of the principle of ambiguity to intensive thermal quantities. As a proof of the error of the approach, the relations for the thermal conductivities of the component elements of a heat pump that implements a multi-valued measure of thermal conductivity are given, and the limiting cases are considered. In two ways, it is established that the thermal conductivity of the specified measure does not depend on the value of the supplied heat flow. It is shown that the declared accuracy of the thermal conductivity measurement method does not correspond to the actual achievable accuracy values and the standard for the unit of surface heat flux density GET 172-2016. The estimation of the currently achievable accuracy of measuring the thermal conductivity of solids is given. The directions of further research and possible solutions to the problem are given.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Sign in / Sign up

Export Citation Format

Share Document