Structure of the marine boundary layer over north western Indian Ocean during 1983 summer monsoon

1990 ◽  
Vol 52 (1-2) ◽  
pp. 177-191
Author(s):  
M. R. Ramesh Kumar ◽  
Y. Sadhuram ◽  
G. S. Michael ◽  
L. V. Gangadhara Rao
2017 ◽  
Vol 30 (6) ◽  
pp. 2055-2067 ◽  
Author(s):  
Lei Zhou ◽  
Raghu Murtugudde ◽  
Dake Chen ◽  
Youmin Tang

A central Indian Ocean (CIO) mode is found to play a critical role in driving the heavy precipitation during the Indian summer monsoon (ISM). It is typically denoted with a combination of intraseasonal sea surface temperature (SST) anomalies and intraseasonal wind anomalies over the central Indian Ocean, and it preserves the mechanistic links among various dynamic and thermodynamic fields. Like a T junction, it controls the propagation direction of the intraseasonal variabilities (ISVs) originating in the western Indian Ocean. During the ISM, the CIO mode creates an environment favorable for the northward-propagating mesoscale variabilities. These results unveil the relation between the subseasonal monsoonal precipitation and the CIO mode in the ocean–atmosphere system in the Indian Ocean. The identification of the CIO mode deepens our understanding of the coupled monsoon system and brightens the prospects for better simulation and prediction of monsoonal precipitation in the affected countries.


2015 ◽  
Vol 8 ◽  
Author(s):  
Anil Mohapatra ◽  
Dipanjan Ray ◽  
David G. Smith

Gymnothorax prolatusis recorded for the first time from the Indian Ocean on the basis of four specimens collected in the Bay of Bengal off India and one from the Arabian Sea off Pakistan. These records extend the range of the species from Taiwan to the north-western Indian Ocean.


2017 ◽  
Vol 30 (11) ◽  
pp. 4299-4316 ◽  
Author(s):  
Adam V. Rydbeck ◽  
Tommy G. Jensen

Abstract A theory for intraseasonal atmosphere–ocean–atmosphere feedback is supported whereby oceanic equatorial Rossby waves are partly forced in the eastern Indian Ocean by the Madden–Julian oscillation (MJO), reemerge in the western Indian Ocean ~70 days later, and force large-scale convergence in the atmospheric boundary layer that precedes MJO deep convection. Downwelling equatorial Rossby waves permit high sea surface temperature (SST) and enhance meridional and zonal SST gradients that generate convergent circulations in the atmospheric boundary layer. The magnitude of the SST and SST gradient increases are 0.25°C and 1.5°C Mm−1 (1 megameter is equal to 1000 km), respectively. The atmospheric circulations driven by the SST gradient are estimated to be responsible for up to 45% of the intraseasonal boundary layer convergence observed in the western Indian Ocean. The SST-induced boundary layer convergence maximizes 3–4 days prior to the convective maximum and is hypothesized to serve as a trigger for MJO deep convection. Boundary layer convergence is shown to further augment deep convection by locally increasing boundary layer moisture. Warm SST anomalies facilitated by downwelling equatorial Rossby waves are also associated with increased surface latent heat fluxes that occur after MJO convective onset. Finally, generation of the most robust downwelling equatorial Rossby waves in the western Indian Ocean is shown to have a distinct seasonal distribution.


2021 ◽  
Vol 21 (11) ◽  
pp. 8437-8454
Author(s):  
Anoop S. Mahajan ◽  
Qinyi Li ◽  
Swaleha Inamdar ◽  
Kirpa Ram ◽  
Alba Badia ◽  
...  

Abstract. Recent observations have shown the ubiquitous presence of iodine oxide (IO) in the Indian Ocean marine boundary layer (MBL). In this study, we use the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem version 3.7.1), including halogen (Br, Cl, and I) sources and chemistry, to quantify the impacts of the observed levels of iodine on the chemical composition of the MBL. The model results show that emissions of inorganic iodine species resulting from the deposition of ozone (O3) on the sea surface are needed to reproduce the observed levels of IO, although the current parameterizations overestimate the atmospheric concentrations. After reducing the inorganic emissions by 40 %, a reasonable match with cruise-based observations is found, with the model predicting values between 0.1 and 1.2 pptv across the model domain MBL. A strong seasonal variation is also observed, with lower iodine concentrations predicted during the monsoon period, when clean oceanic air advects towards the Indian subcontinent, and higher iodine concentrations predicted during the winter period, when polluted air from the Indian subcontinent increases the ozone concentrations in the remote MBL. The results show that significant changes are caused by the inclusion of iodine chemistry, with iodine-catalysed reactions leading to regional changes of up to 25 % in O3, 50 % in nitrogen oxides (NO and NO2), 15 % in hydroxyl radicals (OH), 25 % in hydroperoxyl radicals (HO2), and up to a 50 % change in the nitrate radical (NO3), with lower mean values across the domain. Most of the large relative changes are observed in the open-ocean MBL, although iodine chemistry also affects the chemical composition in the coastal environment and over the Indian subcontinent. These results show the importance of including iodine chemistry in modelling the atmosphere in this region.


Zootaxa ◽  
2021 ◽  
Vol 4951 (3) ◽  
pp. 511-528
Author(s):  
SERGEY V. BOGORODSKY ◽  
UWE ZAJONZ ◽  
FOUAD N. SAEED ◽  
SIMON WEIGMANN

The species composition of batoid fishes from coastal waters of the Socotra Archipelago is reviewed, with confirmed records of the wedgefish Rhynchobatus djiddensis (Forsskål, 1775) and four new records of sharkrays, wedgefishes, and guitarfishes based on collected specimens, including one species from Abd al-Kuri Island, Rhina ancylostoma Bloch & Schneider, 1801 (Rhinidae), and three species from the main island Socotra, Acroteriobatus salalah (Randall & Compagno, 1995) and Rhinobatos punctifer Compagno & Randall, 1987 (Rhinobatidae), and Rhynchobatus australiae Whitley, 1939 (Rhinidae). Among the new records for the Socotra Archipelago, R. australiae represents the first verified record for the Arabian region. In addition, records of four stingray species (Dasyatidae) are verified based on underwater observations accompanied with photographs. All recorded batoid fishes are commercial species caught in the local small-scale fishery. Information on the identification and distribution of each species is provided.  


2018 ◽  
Author(s):  
Sayako Ueda ◽  
Kazuo Osada ◽  
Keiichiro Hara ◽  
Masanori Yabuki ◽  
Fuminori Hashihama ◽  
...  

Abstract. Mixing states of soot-containing aerosol particles are important information for the simulation of climatic effects of black carbon aerosols in the atmosphere. To elucidate the mixing states and morphological features of soot-containing particles in remote ocean areas, we conducted onboard observations over the southern Indian Ocean and the Southern Ocean during the TR/V Umitaka-maru UM-08-09 cruise, which started from Benoa, Indonesia on 1 December 2008 via Cape Town, South Africa and which terminated in Fremantle, Australia on 6 February 2009. The light absorption coefficients of size-segregated particles (


2012 ◽  
Vol 25 (14) ◽  
pp. 4914-4931 ◽  
Author(s):  
Pang-chi Hsu ◽  
Tim Li

Abstract The moisture budget associated with the eastward-propagating Madden–Julian oscillation (MJO) was diagnosed using 1979–2001 40-yr ECMWF Re-Analysis (ERA-40) data. A marked zonal asymmetry of the moisture relative to the MJO convection appears in the planetary boundary layer (PBL, below 700 hPa), creating a potentially more unstable stratification to the east of the MJO convection and favoring the eastward propagation of MJO. The PBL-integrated moisture budget diagnosis indicates that the vertical advection of moisture dominates the low-level moistening ahead of the convection. A further diagnosis indicates that the leading term in the vertical moisture advection is the advection of the background moisture by the MJO ascending flow associated with PBL convergence. The cause of the zonally asymmetric PBL convergence is further examined. It is found that heating-induced free-atmospheric wave dynamics account for 75%–90% of the total PBL convergence, while the warm SST anomaly induced by air–sea interaction contributes 10%–25% of the total PBL convergence. The horizontal moisture advection also plays a role in contributing to the PBL moistening ahead of the MJO convection. The leading term in the moisture advection is the advection across the background moisture gradient by the MJO flow. In the western Indian Ocean, Maritime Continent, and western Pacific, the meridional moisture advection by the MJO northerly flow dominates, while in the eastern Indian Ocean the zonal moisture advection is greater. The contribution of the moisture advection by synoptic eddies is in general small; it has a negative effect over the tropical Indian Ocean and western Pacific and becomes positive in the Maritime Continent region.


Sign in / Sign up

Export Citation Format

Share Document