Isolation and characterization of human smooth muscle cells from umbilical cord vein and their reconstitution in a vascular co-culture model with underlying endothelial cells

1996 ◽  
Vol 18 (4) ◽  
pp. 329-341 ◽  
Author(s):  
K�th Bohlin ◽  
Ludmila Olsson ◽  
Ian Cotgreave
2011 ◽  
Vol 34 (3) ◽  
pp. 138 ◽  
Author(s):  
Zhi Zhang ◽  
Guang Chu ◽  
Hong-Xian Wu ◽  
Ni Zou ◽  
Bao-Gui Sun ◽  
...  

Objective: The goal of this study was to investigate the crosstalk between vascular endothelial cells (ECs) and smooth muscle cells (SMCs) using a three-dimensional (3-D) co-culture model. In addition, the role of IL-8 in this crosstalk was investigated. Methods: A 3-D co-culture model was constructed using a Transwell chamber system and type I collagen gel. Human umbilical artery smooth muscle cells (HUASMCs) were suspended in the gel and added to the upper compartment of the Transwell. Human umbilical vein endothelial cells (HUVECs) were then grown on the surface of the gel. The growth of HUASMCs was tested with a CFDA SE cell proliferation kit. IL-8 and other bioactive substances were investigated by ELISA and real-time PCR. The alteration of p-ERK expression related to the change in IL-8 levels was also examined by Western blot analysis. Results: The proliferation rate of HUASMCs in the 3-D co-culture model was 0.679 ± 0.057. Secretion and transcription of VEGF, t-PA, NO and VCAM-1 in the 3-D co-culture model were different than in single (2-D) culture. When 3-D co-cultured, IL-8 released by HUVECs was significantly increased (2.35 ± 0.16 fold) (P﹤0.05) and the expression of VCAM-1 from HUASMCs was reduced accordingly (0.55±0.09 fold). In addition, increasing or decreasing the level of IL-8 changed the level of p-ERK and VCAM-1 expression. The reduction of VCAM-1, resulting from increased IL-8, could be blocked by the MEK inhibitor, PD98059. Conclusion: Crosstalk between HUVECs and HUASMCs occurred and was probably mediated by IL-8 in this 3-D co-culture model.


1991 ◽  
Vol 55 ◽  
pp. 129
Author(s):  
Miwa Tanaka ◽  
Yoshimitsu Komatsu ◽  
Hisayuki Ohata ◽  
Isao Kusano ◽  
Masayuki Sakurai ◽  
...  

1985 ◽  
Vol 230 (2) ◽  
pp. 503-507 ◽  
Author(s):  
J D Pearson ◽  
S B Coade ◽  
N J Cusack

We compared the properties of the ectonucleotidases (nucleoside triphosphatase, EC 3.6.1.15; nucleoside diphosphatase, EC 3.6.1.6; 5′-nucleotidase, EC 3.1.3.5) in intact pig aortic smooth-muscle cells in culture with the properties that we previously investigated for ectonucleotidases of aortic endothelial cells [Cusack, Pearson & Gordon (1983) Biochem. J. 214, 975-981]. In experiments with nucleotide phosphorothioate diastereoisomers, stereoselective catabolism of adenosine 5′-[β-thio]triphosphate, but not of adenosine 5′-[α-thio]triphosphate, by the triphosphatase and stereoselective catabolism of adenosine 5′-[α-thio]diphosphate by the diphosphatase were found, as occurs in endothelial cells. In contrast with endothelial ecto-5′-nucleotidase, the smooth-muscle-cell enzyme catabolized adenosine 5′-monophosphorothioate (AMPS) to adenosine: the affinity of the enzyme for AMPS was greater than for AMP, and Vmax for AMPS was about one-sixth that for AMP. In both cell types AMPS was an apparently competitive inhibitor of AMP catabolism by 5′-nucleotidase. The relative rates of catabolism of nucleotide enantiomers in which the natural D-ribofuranosyl moiety is replaced by an L-ribofuranosyl moiety were similar to those in endothelial cells. No ectopyrophosphatase activity was detected in smooth-muscle cells, in contrast with endothelial cells, where modest activity is present.


Sign in / Sign up

Export Citation Format

Share Document