Non-equilibrium synthesis of new materials

1996 ◽  
Vol 3 (3-4) ◽  
pp. 343-364 ◽  
Author(s):  
R. W. Gardiner ◽  
P. S. Goodwin ◽  
S. B. Dodd ◽  
B. W. Viney
Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Jacek Tyczkowski ◽  
Hanna Kierzkowska-Pawlak

Cold (non-equilibrium) plasma techniques have long been used as plasma deposition methods to create new materials, often with unique properties, which cannot be produced any other way, as well as plasma treatment methods for the sophisticated modification of conventional materials [...]


2019 ◽  
Vol 23 (10) ◽  
pp. 1901-1906
Author(s):  
O.N. Nenuwe ◽  
O.E. Agbalagba

It is well known that the physics of thermal management is quite challenging as electronic device sizes are miniaturized and new materials are developed. This study calculates the thermal interface conductance (TIC), thermal interface resistance (TIR) and thermal grain conductivity across GaAs(110)/GaAs(100) and GaAs/InAs interfaces using the reverse non-equilibrium molecular dynamics (RNEMD) technique. Data obtained showed that, at GaAs(110)/GaAs(100) the TIC increased from 0.912 x 10-9 (W/K) to 1.433 x 10-9 (W/K), the TIR decreased from 1.096 x 109 (K/W) to 0.697 x 109 (K/W) between 300 K and 1000 K, and the thermal grain conductivity increased from 7.47 (W/mK) to 15.52 (W/mK) and 7.48 (W/mK) to 80.71 (W/mK) between 15 Å and 55 Å at 300 K. At GaAs/InAs interface the TIC increased from 7.228 x -10 (W/K) to 14.498 x 10-10 (W/K) and the TIR decreased from 0.138 x 1010 (K/W) to 0.068 x 1010 (K/W) between 300 K and 700 K, respectively. It was observed that, as temperature is increased the TIC and TIR for both materials change significantly. This trend is consistent with previous molecular dynamic studies of interface materials.Keywords: Interface conductance, thermal resistance, grain conductivity, temperature.


1989 ◽  
Vol 1 (2) ◽  
pp. 27-42 ◽  
Author(s):  
J. Mazumder ◽  
S. Sircar ◽  
C. Ribaudo ◽  
A. Kar

Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
Edward A Kenik

Segregation of solute atoms to grain boundaries, dislocations, and other extended defects can occur under thermal equilibrium or non-equilibrium conditions, such as quenching, irradiation, or precipitation. Generally, equilibrium segregation is narrow (near monolayer coverage at planar defects), whereas non-equilibrium segregation exhibits profiles of larger spatial extent, associated with diffusion of point defects or solute atoms. Analytical electron microscopy provides tools both to measure the segregation and to characterize the defect at which the segregation occurs. This is especially true of instruments that can achieve fine (<2 nm width), high current probes and as such, provide high spatial resolution analysis and characterization capability. Analysis was performed in a Philips EM400T/FEG operated in the scanning transmission mode with a probe diameter of <2 nm (FWTM). The instrument is equipped with EDAX 9100/70 energy dispersive X-ray spectrometry (EDXS) and Gatan 666 parallel detection electron energy loss spectrometry (PEELS) systems. A double-tilt, liquid-nitrogen-cooled specimen holder was employed for microanalysis in order to minimize contamination under the focussed spot.


Author(s):  
Michel Le Bellac ◽  
Fabrice Mortessagne ◽  
G. George Batrouni

1936 ◽  
Vol 15 (12) ◽  
pp. 686
Author(s):  
Hodgson ◽  
Johnson ◽  
Skipper ◽  
Wilcock ◽  
Bailey ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document