scholarly journals Towards Catalysts Prepared by Cold Plasma

Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 75
Author(s):  
Jacek Tyczkowski ◽  
Hanna Kierzkowska-Pawlak

Cold (non-equilibrium) plasma techniques have long been used as plasma deposition methods to create new materials, often with unique properties, which cannot be produced any other way, as well as plasma treatment methods for the sophisticated modification of conventional materials [...]

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
G. Gatti ◽  
D. D’Angelo ◽  
M. Errahali ◽  
M. Biasizzo ◽  
L. Marchese ◽  
...  

The deposition of organic functionalities on biomaterials to immobilize biomolecules is a research area of great interest in the medical field. The surface functionalization of a 3D porous scaffolds of PDLLA with carboxyl (-COOH) and amino (-NH2) groups by cold plasma treatment at atmospheric pressure is described in this paper. Two methods of continuous and pulsed plasma deposition were compared to assess the degree of functionalization of the internal porous 3D scaffold. In particular, the pulsed plasma treatment was found to functionalize uniformly not only the sample surface but also inside the open cavities thanks to its permeability and diffusion in the porous 3D scaffold. The species developed in the plasma were studied by optical emission spectroscopy (OES) technique, while the functionalization of the sponges was evaluated by the Diffuse Reflectance Fourier-Transform Infrared Spectroscopy (DR-FTIR) technique using also the adsorption of ammonia (NH3) and deuterated water (D2O) probe molecules. The functional groups were deposited only on the front of the sponge, then the structural characterization of both front and back of the sponge has demonstrated the uniform functionalization of the entire scaffold.


Author(s):  
O. A. Pivovarov ◽  
S. Y. Mykolenko

The article was devoted to an innovative approach of improving bakery products quality through using an activated water, exposed to the action of contact non-equilibrium (cold) plasma. Wheat bread quality characteristics were presented during using the plasma-chemically activated water combined with wheat flour of poor baking properties. It is shown that the treatment of water with contact non-equilibrium plasma leads to an improvement in the consumer qualities of bread, an increase in its resistance to microbiological spoilage. The wheat bread made with the plasma-chemically activated water presented the possibility to prolong the shelf-life of the product, helping to decrease losses and waste during the bread food chain.


2016 ◽  
Vol 2 (4(28)) ◽  
pp. 60
Author(s):  
Ольга Вячеславовна Сергеева ◽  
Александр Андреевич Пивоваров

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4179
Author(s):  
Quazi Nahida Sultana ◽  
Mujibur Khan ◽  
Rajib Mahamud ◽  
Mohammadsadegh Saadatzi ◽  
Papia Sultana ◽  
...  

The effect of a self-pulsing non-equilibrium plasma discharge on piezoelectric PVDF nanofiber membrane was investigated. The plasma discharge was generated in air with a DC power source, with a discharge current of 0.012 mA, a nominal interelectrode separation of 1 mm, and discharge voltage of ~970 V. In a continuous fabrication process, the electrospinning method was used to generate thin nanofiber membrane with a flow rate of 0.7–1 mL h−1 and 25–27 kV voltage to obtain the nanofiber with high sensitivity and a higher degree of alignment and uniformity over a larger area. Plasma treatment was applied on both single layer and multi-layer (three layers) nanomembranes. In addition, simultaneously, the nanofiber membranes were heat-treated at a glass transition temperature (80–120 °C) and then underwent plasma treatment. Fourier-transform infrared (FTIR) spectroscopy showed that the area under the curve at 840 and 1272 cm−1 (β phase) increased due to the application of plasma and differential scanning calorimeter (DSC) indicated an increase in the degree of crystallinity. Finally, PVDF sensors were fabricated from the nanofibers and their piezoelectric properties were characterized. The results suggested that compared to the pristine samples the piezoelectric properties in the plasma and plasma-heat-treated sensors were enhanced by 70% and 85% respectively.


2014 ◽  
Vol 11 (3) ◽  
pp. 247-255 ◽  
Author(s):  
Vittorio Colombo ◽  
Davide Fabiani ◽  
Maria Letizia Focarete ◽  
Matteo Gherardi ◽  
Chiara Gualandi ◽  
...  

Author(s):  
Yuri S. Yuri S. Akishev

The subject of this review is the low-temperature (or "cold") weakly-ionized but strongly non-equilibrium plasma created at atmospheric pressure in gaseous mixtures or directly in atmospheric air. Cold plasma is rather new, but very perspective object. The strong non-equilibrium of the weakly-ionized plasma leads to that energetic electrons despite their small quantity very effectively excite and dissociate the neutral particles which are contained in surrounding gas, for example, of a molecule of oxygen and water. The pointed above property of cold plasma is valuable from the practical point of view because it allows creating in plasma-forming gas rather intensive ultra-violet radiation and high concentration of physically and biochemically reactive species (metastable atoms and molecules, radicals, ozone, and others) with rather small specific energy consumption. Now the usage of cold plasma at atmospheric pressure gives the opportunity to solve many practical problems which were earlier seeming unsolvable. It is possible even to claim that the approaches based on the use of cold plasma in dense gases define modern progress in many fields of science, biomedicine and, in particular, in the field of chemical technology. The review of modern experimental methods of creation of the cold plasma at atmospheric pressure is given. Physical and chemical features of cold plasma in dense gases have been considered. Special attention is paid to the kinetics of the charged particles in non-equilibrium plasma and the vibrationally excited molecules as well. Additionally, the kinetics of the electronic excited and metastable states is taken into account because they also influence a biochemical activity of low-temperature plasma. A lot of places is given to concrete examples of the modern practical use of such plasma in ecology for the destruction of the low-concentrated harmful organic and inorganic impurities in the exhausted airflows at atmospheric pressure.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-871-C7-872
Author(s):  
E. F. Gippius ◽  
B. I. Iljukhin ◽  
V. N. Kolesnikov

Sign in / Sign up

Export Citation Format

Share Document