Toxicity of organic solvents used in situ in microbial fermentation

1995 ◽  
Vol 9 (4) ◽  
pp. 247-252 ◽  
Author(s):  
Ján Marták ◽  
Michal Rosenberg ◽  
Štefan Schlosser ◽  
L'udmila Krištofíková
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Selda Sert ◽  
Nilgün Kızılcan

Purpose Cyclohexanone-formaldehyde resin (CFR) was in situ modified with olive pomace (OP) in the presence of sodium hydroxide. The purpose of this study is to produce eco-friendly OP modified cyclohexanone composite resins (OPCFCR) with a one-step method that has higher condensation reaction temperature than CFR. The water absorption properties, gloss value and cross-cut adhesion properties of the product were investigated. Design/methodology/approach Cyclohexanone, formalin (37% aqueous solution) and tannin were mixed and 20% aqueous NaOH solution was added to produce the resin. OP has environmentally friendly bio-based lignin, cellulose and phenolic compounds and the OP structure has been incorporated into the structure of the CFR resin during the in situ modification, such as resole resin and polysaccharide. The weights of pomace were used as 5% and 10% of the weight of cyclohexanone in cyclohexanone-formaldehyde composite resins, respectively. Findings There is an improvement in the properties of the OPCFCR produced from an agricultural waste that is very abundant in Gulf of Edremit region of Balikesir. The OPCFCRs were soluble in common organic solvents. The product OPCFCR has a dark red-brown color. Research limitations/implications The reaction mixture must be stirred continuously. Subsequently, 37% formalin was added dropwise in total while refluxing. The amount of aqueous NaOH solution is limited as the formed resin may become insoluble in common organic solvents. At the end of the reaction, a water-insoluble resin is obtained. Practical implications This study provides the application of ketonic resins. The OPCFCR containing phenolic groups may also promote the adhesive strength of a coating. Social implications These resins may be used for the preparation of adhesive. OP, with a large amount of catechol groups, was considered for reducing the formaldehyde emission level on the adhesive system. Originality/value OPCFCR has been synthesized in the presence of a base catalyst. Environmental and ecological concerns have increased the attention paid by chemical industry to renewable raw materials.


2004 ◽  
Vol 2 (8) ◽  
pp. 1155 ◽  
Author(s):  
Masahiro Suzuki ◽  
Yasushi Nakajima ◽  
Mariko Yumoto ◽  
Mutsumi Kimura ◽  
Hirofusa Shirai ◽  
...  

Langmuir ◽  
2015 ◽  
Vol 31 (31) ◽  
pp. 8680-8688 ◽  
Author(s):  
Tara L. Fox ◽  
Saide Tang ◽  
Jonathan M. Horton ◽  
Heather A. Holdaway ◽  
Bin Zhao ◽  
...  

1989 ◽  
Vol 3 (5) ◽  
pp. 315-320 ◽  
Author(s):  
Christopher Job ◽  
Cosima Schertler ◽  
Walter L. Staudenbauer ◽  
Eckhart Blass

2020 ◽  
Vol 49 (38) ◽  
pp. 13226-13232 ◽  
Author(s):  
Yajun Jia ◽  
Yuexiao Pan ◽  
Jiawen Zhu ◽  
Xi'an Chen ◽  
Aiyin Wang ◽  
...  

An efficient red emitting phosphor KRbGeF6 : Mn4+ was prepared by an in situ one-pot ion-exchange method at room temperature without organic solvents or HF.


1997 ◽  
Vol 65 (1) ◽  
pp. 111-119 ◽  
Author(s):  
M. Fondevila ◽  
G. Muñoz ◽  
C. Castrillo ◽  
F. Vicente ◽  
S. M. Martín-Orúe

AbstractThe effect of ammonia treatment of straw on both the rumen environment and the extent of its microbial fermentation was studied. Four rumen cannulated sheep were randomly given 700 g/day of untreated straw plus urea (US), ammonia-treated straw (TS) and alfalfa hay (AH) in a change-over design with three periods. Rumen pH was lower and ammonia-nitrogen and total volatile fatty acid (VFA) concentrations were higher (P < 0·001) with AH than with US or TS. With the straw diets, TS promoted a lower pH than US (P < 0·05), but differences were less than 0·3 units and the mean pH was never below 6·5. There were no differences between the straw diets in ammonia-nitrogen or VFA concentration (P > 0·05). When untreated barley straw (BS) and treated straw (TS) were incubated in situ disappearance of dry matter (dDM) at 12, 24 and 48 h (P < 0·01) and neutral-detergent fibre (dNDF) at 48 h (P < 0·001) were higher with TS. In vitro incubation showed a higher gas production with TS only after 36 h (P < 0·05) whereas gas from BS fermentation was higher up to 14 h (P < 0·05). Among diets, dDM, dNDF and gas production with US were numerically higher than with TS or AH throughout, although few significant differences were observed, except for a higher dDM at 12 (P < 0·01) and 24 (P < 0·10) h and a higher dNDF at 12 h (P < 0·10). Particle-associated enzymes were extracted from BS and TS incubated in the rumen for 4, 8, 22 and 24 h. Results ofxylanase and cellulase activities support those of straw incubation, with a drop between 4 and 8 h in TS diet. The concentration of residual phenolics per unit of incubated straws after 12 and 24 h show that phenolics release to the media was higher with the TS diet. Daily changes of phenolic concentration into rumen liquid was also higher with TS than with US (P < 0·001). The increased release of straw phenolics by ammoniation reduced the potential for rumen degradation of straw, mainly in the first hours of the fermentation period.


Sign in / Sign up

Export Citation Format

Share Document