Comparative analysis of the composition of two chlorophyll-b-containing light-harvesting complexes

Planta ◽  
1990 ◽  
Vol 180 (3) ◽  
Author(s):  
C. Wilhelm ◽  
I. Wiedemann ◽  
M. May
1990 ◽  
Vol 45 (5) ◽  
pp. 366-372 ◽  
Author(s):  
M. T. Giardi ◽  
J. Barber ◽  
M. C. Giardina ◽  
R. Bassi

Abstract Isoelectrofocusing has been used to separate various chlorophyll-protein complexes of photosystem two (PS II). Light-harvesting complexes containing chlorophyll a and chlorophyll b (LHC II) were located in bands having p/s in the region of 4.5. At slightly higher pH other light-harvesting complexes containing little or no chlorophyll b were found. In the most basic region of the isoelectrofocusing gel, were located PS II core complexes characterized by con­taining the proteins of CP47, CP43, D 1, D 2 and α-subunit of cytochrome b559. The number of PS II core bands depended on the particular conditions employed for the separation procedure and in some cases were contaminated by CP 29. It is suggested that this heterogeneity resulting from different protonation states of the PS II. The least-acidic PS II core complex (pI 5.5) was found to bind the herbicides atrazine, diuron and dinoseb. In contrast, a PS II core complex with a p / of 4.9 bound only diuron. Its inability to bind atrazine was shown to be due to the low pH but no such explanation could be found for dinoseb. When atrazine-resistant mutant Senecio vulgaris was used, no binding of radioactive atra­ zine was observed with the PS II cores having a p i of 5.5. It is therefore suggested that the normal atrazine binding observed with PS II cores involves the high affinity site detected with intact membranes. With the PS II cores, however, this site has a reduced affinity probably due to structural modification in the D 1-polypeptide resulting from the isolation procedures.


FEBS Letters ◽  
2001 ◽  
Vol 499 (1-2) ◽  
pp. 27-31 ◽  
Author(s):  
Volkmar H.R. Schmid ◽  
Peter Thomé ◽  
Wolfgang Rühle ◽  
Harald Paulsen ◽  
Werner Kühlbrandt ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
pp. 262-271
Author(s):  
Pablo Reséndiz-Vázquez ◽  
Ricardo Román-Ancheyta ◽  
Roberto León-Montiel

Transport phenomena in photosynthetic systems have attracted a great deal of attention due to their potential role in devising novel photovoltaic materials. In particular, energy transport in light-harvesting complexes is considered quite efficient due to the balance between coherent quantum evolution and decoherence, a phenomenon coined Environment-Assisted Quantum Transport (ENAQT). Although this effect has been extensively studied, its behavior is typically described in terms of the decoherence’s strength, namely weak, moderate or strong. Here, we study the ENAQT in terms of quantum correlations that go beyond entanglement. Using a subsystem of the Fenna–Matthews–Olson complex, we find that discord-like correlations maximize when the subsystem’s transport efficiency increases, while the entanglement between sites vanishes. Our results suggest that quantum discord is a manifestation of the ENAQT and highlight the importance of beyond-entanglement correlations in photosynthetic energy transport processes.


2021 ◽  
Author(s):  
Vincenzo Mascoli ◽  
Nicoletta Liguori ◽  
Lorenzo Cupellini ◽  
Eduard Elias ◽  
Benedetta Mennucci ◽  
...  

Carotenoids are essential constituents of plant light-harvesting complexes (LHCs), being involved in protein stability, light harvesting, and photoprotection. Unlike chlorophylls, whose binding to LHCs is known to require coordination of...


2019 ◽  
Vol 10 (42) ◽  
pp. 9650-9662 ◽  
Author(s):  
Felipe Cardoso Ramos ◽  
Michele Nottoli ◽  
Lorenzo Cupellini ◽  
Benedetta Mennucci

The spectral tuning of LH2 antenna complexes arises from H-bonding, acetyl torsion, and inter-chromophore couplings.


Sign in / Sign up

Export Citation Format

Share Document