Role of sodium ions for sulfate transport and energy metabolism in Desulfovibrio salexigens

1994 ◽  
Vol 161 (1) ◽  
pp. 55-61 ◽  
Author(s):  
Bernd Kreke ◽  
Heribert Cypionka
Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


2019 ◽  
Author(s):  
Min Pi ◽  
Fuyi Xu ◽  
Ruisong Ye ◽  
Satoru K. Nishimoto ◽  
Robert A. Kesterson ◽  
...  

2021 ◽  
Vol 141 ◽  
pp. 106539
Author(s):  
Tran Ngoc ◽  
Ho Van Tuyen ◽  
Le Anh Thi ◽  
Le Xuan Hung ◽  
Nguyen Xuan Ca ◽  
...  
Keyword(s):  

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 608
Author(s):  
Domenico Nuzzo

All cells continuously generate reactive oxygen species (ROS) through the respiratory chain during the energy metabolism process [...]


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1168
Author(s):  
Elena Belenkaya ◽  
Ivan Pensionerov

On 14 January 2008, the MESSENGER spacecraft, during its first flyby around Mercury, recorded the magnetic field structure, which was later called the “double magnetopause”. The role of sodium ions penetrating into the Hermean magnetosphere from the magnetosheath in generation of this structure has been discussed since then. The violation of the symmetry of the plasma parameters at the magnetopause is the cause of the magnetizing current generation. Here, we consider whether the change in the density of sodium ions on both sides of the Hermean magnetopause could be the cause of a wide diamagnetic current in the magnetosphere at its dawn-side boundary observed during the first MESSENGER flyby. In the present paper, we propose an analytical approach that made it possible to determine the magnetosheath Na+ density excess providing the best agreement between the calculation results and the observed magnetic field in the double magnetopause.


1979 ◽  
Vol 65 (6) ◽  
pp. 833 ◽  
Author(s):  
D. Michael Payne ◽  
David G. Powley ◽  
Ben G. Harris

2004 ◽  
Vol 36 (4) ◽  
pp. 252-261 ◽  
Author(s):  
Yi‐Hao Yu ◽  
Henry Ginsberg
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document