Genetic control of heading date and spikelet number in common wheat (T. aestivum L.) line ‘Noa’

1986 ◽  
Vol 72 (1) ◽  
pp. 105-107 ◽  
Author(s):  
E. Millet
2020 ◽  
Vol 133 (6) ◽  
pp. 1825-1838
Author(s):  
Zhaoyan Chen ◽  
Xuejiao Cheng ◽  
Lingling Chai ◽  
Zihao Wang ◽  
Dejie Du ◽  
...  

2019 ◽  
Vol 15 (1) ◽  
pp. 11
Author(s):  
NFN Tasliah ◽  
NFN Ma'sumah ◽  
Joko Prasetiyono

<p>Rice lines for increasing grain yield derived from Code variety that have loci associated to the spikelet number and early heading date (qTSN4 and qDTH8 locus, respectively) have been developed. The objectives of this research were to molecularly analyze, to evaluate the yield of Code-qTSN4 and Code-qDTH8 lines in the field, and to obtain the lines with yield potential of at least 10% higher than that shown by Code. The study was conducted in October 2016 to March 2017. The study was divided into two activities: molecular verification of the qTSN4, qDTH8, and Xa7 loci using specific markers and field trials at two locations in West Java, i.e. Sukamandi Experimental Station and Cianjur farmer’s paddy field. The genetic materials used were 56 rice genotypes consisted of 49 lines (Code-qTSN4 and Code-qDTH8) and 7 check varieties. Molecular analysis showed that all rice lines tested contained qTSN4, qDTH8, and Xa7 loci. All of the loci were in homozygous stage indicating that they were pure lines. Field trial results showed that Cianjur location gave much better on yield component variables than that in Sukamandi. The highest increase in spikelet number was shown by B6-4 planted at Cianjur with increase of 30.06% and B12-2 planted at Sukamandi with increase of 25.15% compared to Code. Both lines were classified as Code-qTSN4 line group. The qTSN4 and qDTH8 loci proved to increase yield more than 20% compared to Code. A total of 34 lines resulted from this study can be used for advanced yield trials conducted at several agro-ecologically different locations.</p>


Crop Science ◽  
1977 ◽  
Vol 17 (2) ◽  
pp. 296-299 ◽  
Author(s):  
M. S. Rahman ◽  
G. M. Halloran ◽  
J. H. Wilson

Author(s):  
Beatrice Corsi ◽  
Lia Obinu ◽  
Camila M. Zanella ◽  
Saverio Cutrupi ◽  
Rob Day ◽  
...  

Abstract Key message Quantitative trait locus (QTL) mapping of 15 yield component traits in a German multi-founder population identified eight QTL each controlling ≥2 phenotypes, including the genetic loci Rht24, WAPO-A1 and WAPO-B1. Abstract Grain yield in wheat (Triticum aestivum L.) is a polygenic trait representing the culmination of many developmental processes and their interactions with the environment. Toward maintaining genetic gains in yield potential, ‘reductionist approaches’ are commonly undertaken by which the genetic control of yield components, that collectively determine yield, are established. Here we use an eight-founder German multi-parental wheat population to investigate the genetic control and phenotypic trade-offs between 15 yield components. Increased grains per ear was significantly positively correlated with the number of fertile spikelets per ear and negatively correlated with the number of infertile spikelets. However, as increased grain number and fertile spikelet number per ear were significantly negatively correlated with thousand grain weight, sink strength limitations were evident. Genetic mapping identified 34 replicated quantitative trait loci (QTL) at two or more test environments, of which 24 resolved into eight loci each controlling two or more traits—termed here ‘multi-trait QTL’ (MT-QTL). These included MT-QTL associated with previously cloned genes controlling semi-dwarf plant stature, and with the genetic locus Reduced height 24 (Rht24) that further modulates plant height. Additionally, MT-QTL controlling spikelet number traits were located to chromosome 7A encompassing the gene WHEAT ORTHOLOG OF APO1 (WAPO-A1), and to its homoeologous location on chromosome 7B containing WAPO-B1. The genetic loci identified in this study, particularly those that potentially control multiple yield components, provide future opportunities for the targeted investigation of their underlying genes, gene networks and phenotypic trade-offs, in order to underpin further genetic gains in yield.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ziqiang Mo ◽  
Jing Zhu ◽  
Jiatai Wei ◽  
Jieguang Zhou ◽  
Qiang Xu ◽  
...  

Spikelet number per spike (SNS) is the primary factor that determines wheat yield. Common wheat breeding reduces the genetic diversity among elite germplasm resources, leading to a detrimental effect on future wheat production. It is, therefore, necessary to explore new genetic resources for SNS to increase wheat yield. A tetraploid landrace “Ailanmai” × wild emmer wheat recombinant inbred line (RIL) population was used to construct a genetic map using a wheat 55K single- nucleotide polymorphism (SNP) array. The linkage map containing 1,150 bin markers with a total genetic distance of 2,411.8 cm was obtained. Based on the phenotypic data from the eight environments and best linear unbiased prediction (BLUP) values, five quantitative trait loci (QTLs) for SNS were identified, explaining 6.71–29.40% of the phenotypic variation. Two of them, QSns.sau-AM-2B.2 and QSns.sau-AM-3B.2, were detected as a major and novel QTL. Their effects were further validated in two additional F2 populations using tightly linked kompetitive allele-specific PCR (KASP) markers. Potential candidate genes within the physical intervals of the corresponding QTLs were predicted to participate in inflorescence development and spikelet formation. Genetic associations between SNS and other agronomic traits were also detected and analyzed. This study demonstrates the feasibility of the wheat 55K SNP array developed for common wheat in the genetic mapping of tetraploid population and shows the potential application of wheat-related species in wheat improvement programs.


2022 ◽  
Author(s):  
Daijing Zhang ◽  
Xiaoxu Zhang ◽  
Wu Xu ◽  
Tingting Hu ◽  
Jianhui Ma ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Bin Zhang ◽  
Xia Liu ◽  
Weina Xu ◽  
Jianzhong Chang ◽  
Ang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document