The gas bladder of Argentina silus L., with special reference to the ultrastructure of the gas gland cells and the countercurrent vascular bundles

1970 ◽  
Vol 110 (3) ◽  
pp. 350-372 ◽  
Author(s):  
G�ran Fahl�n
1995 ◽  
Vol 269 (4) ◽  
pp. R793-R799 ◽  
Author(s):  
B. Pelster

Mechanisms of acid production and of acid release have been analyzed in isolated gas gland cells of the eel swimbladder using a cytosensor microphysiometer. Incubation of isolated cells with oxamic acid caused a dose-dependent decrease in the rate of proton release. At the highest oxamic acid concentration used (20 mmol/l), proton release was reduced by approximately 40%; incubation with sodium fluoride (10 mmol/l) or removal of glucose from the extracellular medium caused 60 and 80% reduction, respectively. NaCN had little effect on proton secretion. Proton release of isolated gas gland cells was largely dependent on the extracellular sodium concentration, and this sodium effect was in part inhibitable by amiloride. A 15-20% reduction in the rate of proton secretion was observed in the presence of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, an inhibitor of anion exchange. Inhibition of mammalian H(+)-K(+)-adenosinetriphosphatase with omeprazole had no effect, whereas bafilomycin, an inhibitor of vesicular H(+)-adenosinetriphosphatase, induced a 25% reduction in proton secretion. Ethoxzolamide, a membrane-permeable inhibitor of carbonic anhydrase, caused a 60% reduction in proton secretion (inhibition constant = 54.4 nmol/l). Prontosil-dextran, a membrane-impermeable sulfonamide, also reduced the proton release, thus indicating the presence of a membrane-bound carbonic anhydrase facing the extracellular space.


1996 ◽  
Vol 270 (3) ◽  
pp. R578-R584
Author(s):  
B. Pelster ◽  
L. Pott

Single cells and cell clusters isolated from the swimbladder epithelium of the European eel Anguilla anguilla attached to collagen S-coated petri dishes and proliferated in a modified Dulbecco's modified Eagle's medium, supplemented with 0.5% fetal calf serum. At a temperature of 20-22 degrees C, the growing colonies reached confluence typically within 6-8 days. Activities of glycolytic and pentose phosphate shunt enzymes remained stable or increased only slightly during the first 10 days of primary culture. Incubated in a defined medium providing glucose as a fuel, gas gland cells in primary culture produced and released lactic acid. The rate of acid secretion of cultured gas gland cells measured with a cytosensor microphysiometer was not influenced by cholinergic stimulation. Similarly, the Ca2+ ionophore A-23187 had no effect. Adrenergic stimulation with epinephrine or the beta-agonist isoproterenol also did not increase the rate of acid secretion, indicating that in gas gland cells the metabolic activity cannot be stimulated via beta-adrenergic stimulation followed by an increase in adenosine 3',5'-cyclic monophosphate (cAMP). Artificially increasing the intracellular concentration of cAMP by incubation with forskolin or the cAMP analogue 8-(4-chlorophenylthio)-cAMP even resulted in a marked reduction in the rate of acid secretion. The results demonstrate that primary cell culture provides a useful means for the analysis of metabolic control and of ion transfer processes in swimbladder gas gland cells.


PLoS ONE ◽  
2020 ◽  
Vol 15 (9) ◽  
pp. e0239627
Author(s):  
Gabriel Schneebauer ◽  
Constantin Lindemann ◽  
Victoria Drechsel ◽  
Lasse Marohn ◽  
Klaus Wysujack ◽  
...  

1958 ◽  
Vol s3-99 (45) ◽  
pp. 95-102
Author(s):  
RAGNAR FÄNGE

Anatomical and histological observations were made on the gas bladder of the softrayed marine salmonoid fish Argentina silus, which usually lives at depths of about 200 m. The gas bladder is completely closed but rather unlike other known types of closed gas bladders. It is composed of three tissue layers, which may conveniently be called mucosa, submucosa, and tunica externa. The latter contains a large amount of guanine. The tunica externa is penetrated by numerous blood-vessels, which form a widely distributed rete mirabile of a peculiar ‘bi-dimensional’ type in the submucosa. All vessels reaching the mucosa seem to come from this rete system, and no special ‘resorbent mucosa’ such as occurs in euphysoclistae could be identified. The mucosa is folded, forming an alveolar-like structure of unknown function. The gas gland layer is separated from the lumen of the bladder by smooth muscles and an inner epithelium. The close anatomical association of the gas gland tissue with smooth muscles probably is of importance for gas secretion. Analyses of gases from specimens taken from a depth of about 80 m showed a mean oxygen value of almost 80%, which indicates a similar gas secretory mechanism to that in euphysoclistae. Certain aspects of the physiology of the gas bladder in relation to life in deep water are shortly discussed, and the need for a thorough histological examination of the gas bladder in deep-water salmonids is emphasized.


2000 ◽  
Vol 279 (6) ◽  
pp. R2336-R2343 ◽  
Author(s):  
C. Prem ◽  
W. Salvenmoser ◽  
J. Würtz ◽  
B. Pelster

Electron microscopical examination of gas gland cells of the physostome European eel ( Anguilla anguilla) and of the physoclist perch ( Perca fluviatilis) revealed the presence of significant numbers of lamellar bodies, which are known to be involved in surfactant secretion. In the perch, in which the gas gland is a compact structure and gas gland cells are connected to the swim bladder lumen via small canals, lamellar bodies were also found in flattened cells forming the swim bladder epithelium. Flat epithelial cells are absent in the eel swim bladder, in which the whole epithelium consists of cuboidal gas gland cells. In both species, Western blot analysis using specific antibodies to human surfactant protein A (SP-A) showed a cross-reaction with swim bladder tissue homogenate proteins of ∼65 kDa and in the eel occasionally of ∼120 kDa, probably representing SP-A-like proteins in a dimeric and a tetrameric state. An additional band was observed at ∼45 kDa. Western blots using antibodies to rat SP-D again resulted in a single band at ∼45 kDa in both species, suggesting that there might be a cross-reaction of the antibody to human SP-A with an SP-D-like protein of the swim bladder tissue. To localize the surfactant protein, eel gas gland cells were cultured on permeable supports. Under these conditions, the gas gland cells regain their characteristic polarity. Electron microscopy confirmed the presence of lamellar bodies in cultured cells, and occasionally, exocytotic events were observed. Immunohistochemical staining using an antibody to human SP-A demonstrated the presence of surfactant protein only in luminal membranes and in adjacent lateral membranes. Only occasionally, evidence was found for the presence of surfactant protein in lamellar bodies.


Parasitology ◽  
2000 ◽  
Vol 121 (1) ◽  
pp. 75-83 ◽  
Author(s):  
K. NIMETH ◽  
P. ZWERGER ◽  
J. WÜRTZ ◽  
W. SALVENMOSER ◽  
B. PELSTER

The ability of the nematode Anguillicola crassus to infect eel larvae (glass-eel stage) was tested. The results show that glass-eels fed on infected copepods, the natural intermediate host of the nematode, can be infected. Light microscopical examination of the infected developing swimbladder tissue revealed that the infection results in a significant thickening of the connective tissue. The basolateral labyrinth of gas gland cells is very much reduced in infected swimbladders, and the distance of gas gland cells to blood capillaries is enlarged. Critical swimming speed, defined as the speed where the larvae were no longer able to swim against the current, was similar in infected and uninfected animals. At intermediate speeds (about 60–80% of critical swimming speed) infected eels showed a slightly higher swimming activity than control animals. Resting oxygen consumption, measured as an index of metabolic activity, within the first 2 months of infection was higher in control animals, which may be due to a reduced rate of activity in infected glass-eels. By 4–5 months after the infection, however, it was significantly higher in infected animals. This may indicate that at this stage a higher activity of the animals is required to compensate for the increase in body density, but swimming performance of infected and non-infected glass-eels was not significantly different. Oxygen consumption during swimming activity, measured in a swim tunnel at 50% of maximal swimming speed, also was not affected. The results thus show that even glass-eels can be infected with A. crassus, and this probably contributes to the rapid spread of the nematode in Europe. While aerobic metabolism during swimming activity is not affected at this stage of infection, the swimbladder tissue shows severe histological changes, which most likely will impair swimbladder function.


2001 ◽  
Vol 204 (23) ◽  
pp. 4023-4029
Author(s):  
Caroline Prem ◽  
Bernd Pelster

SUMMARY A cell culture system has been developed in which swimbladder gas gland cells from the European eel (Anguilla anguilla) were cultured on a permeable support. Cells seeded on Anodisc 13 (Whatman) or Costar Transwell 13 mm membranes form a confluent cell layer within the first 2 or 3 days of culture but, on the basis of measurements of transepithelial resistance, it is a ‘leaky’ cell layer. In a superfusion system, the apical and basal sides of the cells were superfused asymmetrically, with saline on the apical side and a glucose-containing cell culture medium on the basal side. Under these conditions, the cells continuously produced lactic acid, and approximately 60–70 % of this lactate was released at the basal side. To mimic the in vivo situation, the saline solution supplied to the apical side was replaced by humidified air in an additional series of experiments. Cells cultured in an air/liquid system produced even more lactate, and this lactate was only released to the basal side; there was no leakage of fluid to the apical side. After 4 or 5 days in the superfusion system, the cells were fixed for histological examination. The cells were columnar, similar to gas gland cells in vivo, and showed a clear polarity, with some small microvilli at the apical membrane and extensive membrane foldings at lateral and basal membranes. Immunohistochemical localization of Na+/K+-ATPase revealed that this ATPase was present mainly in the lateral membranes; it was never found in the apical membranes. Cells cultured in the air/liquid system showed a similar structure and polarity.


Sign in / Sign up

Export Citation Format

Share Document