Action of reserpine on the osmium tetroxide zinc iodide reactive site of synaptic vesicles in the pineal nerves of the rat

1968 ◽  
Vol 91 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Amanda Pellegrino De Iraldi ◽  
Roberto Gueudet
Author(s):  
M. Reinecke ◽  
Ch. Walther

The zinc iodide-osmium tetroxide reaction (ZIO) was first used in neurobiological research by Maillet (Bull. Ass. Anat. 53, 233; 1968). Subsequently several authors have shown that, under appropriate conditions, ZIO stains mainly the interior of synaptic vesicles. The substrate of this reaction is under discussion, since ZIO can also react with other subcellular structures in a variety of tissues, e. g. mitochondria, endoplasmic reticulum, dictyosomes and lysosomes. Additionally, in vitro substances as different as some aminoacids, catecholamines, aldehydes and phospholipids (Pellegrino de Iraldi, Experientia 33, 1; 1977) can yield black precipitations with ZIO.Our studies were done with the motor nerve terminals at the femoral retractor unguis muscle of the locust (Locusta migratoria). These terminals are chiefly the endings of excitatory motoraxons and are characterized by the presence of electron lucent vesicles and by an accumulation of mitochondria.


1978 ◽  
Vol 78 (3) ◽  
pp. 839-855 ◽  
Author(s):  
M Reinecke ◽  
C Walther

Retractor unguis nerve muscle preparations from the locust were subjected to the zinc iodide-osmium tetroxide reaction (ZIO) after pre-fixation in glutaraldehyde. Applied for 18 h at 4 degrees C in the dark, ZIO reacts at pH 4.2--4.0 fairly selectively with the matrix of synaptic vesicles. Approximately 53% of the vesicles are completely and 4% partially stained. The percentage of ZIO-positive vesicles is increased to nearly 90% and reduced to 4% or less by pretreatment with SH-protecting (dithiothreitol) or SH-blocking (N-ethylmaleimide, p-chloromercuriphenyl sulfonic acid) and SH-oxidizing (azodicarboxylic acid-bis-dimethylamide) reagents, respectively. Stimulation of the motor nerve at 20 Hz for 7 min, partially fatiguing synaptic transmission, reduces the number of vesicles per square micrometer of terminal area by approximately 52%; 2 min of rest restores this number of its pre-stimulation level. These changes are chiefly accounted for by changes in the number of completely ZIO-positive vesicles. 2 min after the end of stimulation, partially ZIO-positive vesicles are three times more frequent than before. With all experimental conditions, the average volume of vesicles was as follows: ZIO-negative less than partially ZIO-positive less than completely ZIO-positive. The average volume of ZIO-positive vesicles is almost unaffected by stimulation; that of ZIO-negative vesicles is decreased by 25% immediately after stimulation, increasing with subsequent rest to the initial level after 1 h. It is suggested (a) that ZIO demonstrates intravesicular protein(s) containing SH-groups and (b) that the completely ZIO-positive vesicles represent the mature ones ready to be used for transmitter release. How the ZIO reaction differentiates between different developmental stages of vesicles which could arise from the smooth endoplasmic reticulum is discussed.


1969 ◽  
Vol 15 (1) ◽  
pp. 1-16 ◽  
Author(s):  
R. Martin ◽  
J. Barlow ◽  
A. Miralto

1976 ◽  
Vol 22 (2) ◽  
pp. 435-453
Author(s):  
N.J. Lane ◽  
L.S. Swales

In addition to demonstrating synaptic vesicles, staining with the zinc-iodide-osmium tetroxide (ZIO) method reveals the presence of positively reacting GERL membranes in association with the Golgi complex and lysosomes in the nerve cell bodies within ganglia from the locust Schistocerca gregaria and the gastropod molluscs, Limnaea stagnalis and Helix aspersa. A positive response to ZIO occurs in certain Golgi vesicles and saccules, in GERL (Golgi-endoplasmic-reticulum-lysosomes), in multivesicular bodies as well as residual bodies and in small vesicles and cisternae of axonal smooth endoplasmic reticllum (ER). The interrelationships between these organelles are considered in view of the similarity of the ZIO localization to phosphatase-rich sites in the neuronal perikarya and with respect to the possibility that components of the synaptic vesicles are formed in the Golgi region of the cell and migrate via the axonal smooth ER to the synaptic regions.


Author(s):  
Juan Mora-Galindo ◽  
Jorge Arauz-Contreras

The zinc iodide-osmium tetroxide (ZIO) technique is presently employed to study both, neural and non neural tissues. Precipitates depends on cell types and possibly cell metabol ism as well.Guinea pig cecal mucosa, already known to be composed of epithelium with cells at different maturation stages and lamina propria which i s formed by morphologically and functionally heterogeneous cell population, was studied to determine the pat tern of ZIO impregnation. For this, adult Guinea pg cecal mucosa was fixed with buffered 1.2 5% g 1 utara 1 dehyde before incubation with ZIO for 16 hours, a t 4°C in the dark. Further steps involved a quick sample dehydration in graded ethanols, embedding in Epon 812 and sectioning to observe the unstained material under a phase contrast light microscope (LM) and a transmission electron microscope (TEM).


Author(s):  
Vinci Mizuhira ◽  
Hiroshi Hasegawa

Microwave irradiation (MWI) was applied to 0.3 to 1 cm3 blocks of rat central nervous system at 2.45 GHz/500W for about 20 sec in a fixative, at room temperature. Fixative composed of 2% paraformaldehyde, 0.5% glutaraldehyde in 0.1 M cacodylate buffer at pH 7.4, also contained 2 mM of CaCl2 , 1 mM of MgCl2, and 0.1% of tannic acid for conventional observation; and fuether 30-90 mM of potassium oxalate containing fixative was applied for the detection of calcium ion localization in cells. Tissue blocks were left in the same fixative for 30 to 180 min after MWI at room temperature, then proceeded to the sampling procedure, after postfixed with osmium tetroxide, embedded in Epon. Ultrathin sections were double stained with an useal manner. Oxalate treated sections were devided in two, stained and unstained one. The later oxalate treated unstained sections were analyzed with electron probe X-ray microanalyzer, the EDAX-PU-9800, at 40 KV accelerating voltage for 100 to 200 sec with point or selected area analyzing methods.


Author(s):  
Gudrun A. Hutchins

In order to optimize the toughening effect of elastomers in engineering polymers, it is necessary to characterize the size, morphology and dispersion of the specific elastomer within the polymer matrix. For unsaturated elastomers such as butadiene or isoprene, staining with osmium tetroxide is a well established procedure. The residual carbon-carbon double bond in these materials is the reactive site and forms a 1,2-dilato complex with the OsO4. Incorporation of osmium tetroxide into the elastomer not only produces sufficient contrast for TEM, but also crosslinks the elastomer sufficiently so that ultramicrotomy can be accomplished at room temperature with minimal distortion.Blends containing saturated elastomers such as butyl acrylate (BA) and ethylene propylene diene monomer (EPDM) cannot be stained directly with OsO4 because effective reaction sites such as C=C or -NH2 are not available in sufficient number. If additional reaction sites can be introduced selectively into the elastomer by a chemical reaction or the absorption of a solvent, a modified, two-step osmium staining procedure is possible.


1970 ◽  
Vol 22 (3) ◽  
pp. 402-405 ◽  
Author(s):  
C. Rufener ◽  
J.J. Dreifuss
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document