Interrelationships between Golgi, GERL and synaptic vesicles in the nerve cells of insect and gastropod ganglia

1976 ◽  
Vol 22 (2) ◽  
pp. 435-453
Author(s):  
N.J. Lane ◽  
L.S. Swales

In addition to demonstrating synaptic vesicles, staining with the zinc-iodide-osmium tetroxide (ZIO) method reveals the presence of positively reacting GERL membranes in association with the Golgi complex and lysosomes in the nerve cell bodies within ganglia from the locust Schistocerca gregaria and the gastropod molluscs, Limnaea stagnalis and Helix aspersa. A positive response to ZIO occurs in certain Golgi vesicles and saccules, in GERL (Golgi-endoplasmic-reticulum-lysosomes), in multivesicular bodies as well as residual bodies and in small vesicles and cisternae of axonal smooth endoplasmic reticllum (ER). The interrelationships between these organelles are considered in view of the similarity of the ZIO localization to phosphatase-rich sites in the neuronal perikarya and with respect to the possibility that components of the synaptic vesicles are formed in the Golgi region of the cell and migrate via the axonal smooth ER to the synaptic regions.

1963 ◽  
Vol 17 (2) ◽  
pp. 413-421 ◽  
Author(s):  
Toshiyuki Yamamoto

Peak-to-peak distances between two dense lines of the unit membranes of cell organelles were measured on electron micrographs. These distances were compared with corresponding measurements on the plasma membrane and assigned a percentage value. The comparison between organelle and plasma membrane was always carried out with the same negative, in order to exclude as far as possible errors due to differences in focus or other causes. It was revealed by this study that the membranous structures of the cell can be classified into two groups, one thicker and one thinner. Unit membranes of the thicker group (synaptic vesicles, vesicles and capsules of multivesicular bodies, Golgi vesicles) were not significantly different in thickness from the plasma membrane. Unit membranes of the thinner group (mitochondria, nuclear membranes, Golgi lamellae, endoplasmic reticulum), however, were between 85 and 90 per cent of the thickness of the plasma membrane.


Author(s):  
M. Reinecke ◽  
Ch. Walther

The zinc iodide-osmium tetroxide reaction (ZIO) was first used in neurobiological research by Maillet (Bull. Ass. Anat. 53, 233; 1968). Subsequently several authors have shown that, under appropriate conditions, ZIO stains mainly the interior of synaptic vesicles. The substrate of this reaction is under discussion, since ZIO can also react with other subcellular structures in a variety of tissues, e. g. mitochondria, endoplasmic reticulum, dictyosomes and lysosomes. Additionally, in vitro substances as different as some aminoacids, catecholamines, aldehydes and phospholipids (Pellegrino de Iraldi, Experientia 33, 1; 1977) can yield black precipitations with ZIO.Our studies were done with the motor nerve terminals at the femoral retractor unguis muscle of the locust (Locusta migratoria). These terminals are chiefly the endings of excitatory motoraxons and are characterized by the presence of electron lucent vesicles and by an accumulation of mitochondria.


1978 ◽  
Vol 78 (3) ◽  
pp. 839-855 ◽  
Author(s):  
M Reinecke ◽  
C Walther

Retractor unguis nerve muscle preparations from the locust were subjected to the zinc iodide-osmium tetroxide reaction (ZIO) after pre-fixation in glutaraldehyde. Applied for 18 h at 4 degrees C in the dark, ZIO reacts at pH 4.2--4.0 fairly selectively with the matrix of synaptic vesicles. Approximately 53% of the vesicles are completely and 4% partially stained. The percentage of ZIO-positive vesicles is increased to nearly 90% and reduced to 4% or less by pretreatment with SH-protecting (dithiothreitol) or SH-blocking (N-ethylmaleimide, p-chloromercuriphenyl sulfonic acid) and SH-oxidizing (azodicarboxylic acid-bis-dimethylamide) reagents, respectively. Stimulation of the motor nerve at 20 Hz for 7 min, partially fatiguing synaptic transmission, reduces the number of vesicles per square micrometer of terminal area by approximately 52%; 2 min of rest restores this number of its pre-stimulation level. These changes are chiefly accounted for by changes in the number of completely ZIO-positive vesicles. 2 min after the end of stimulation, partially ZIO-positive vesicles are three times more frequent than before. With all experimental conditions, the average volume of vesicles was as follows: ZIO-negative less than partially ZIO-positive less than completely ZIO-positive. The average volume of ZIO-positive vesicles is almost unaffected by stimulation; that of ZIO-negative vesicles is decreased by 25% immediately after stimulation, increasing with subsequent rest to the initial level after 1 h. It is suggested (a) that ZIO demonstrates intravesicular protein(s) containing SH-groups and (b) that the completely ZIO-positive vesicles represent the mature ones ready to be used for transmitter release. How the ZIO reaction differentiates between different developmental stages of vesicles which could arise from the smooth endoplasmic reticulum is discussed.


1991 ◽  
Vol 69 (2) ◽  
pp. 336-341 ◽  
Author(s):  
Tommy C. Sewall ◽  
Jeffrey C. Pommerville

The Chytridiomycete Allomyces macrogynus generates new membranes for cleavage furrow and nuclear-cap formation during gametogenesis and zoosporogenesis. Transmission electron microscopy after impregnation with a mixture of zinc iodide and osmium tetroxide clearly demonstrated changes in the endoplasmic reticulum. Endoplasmic reticulum was intensely stained but did not appear to contribute to the formation of the unstained flagellar membranes or cleavage furrows. However, the relative cytoplasmic volume of endoplasmic reticulum decreased as positively stained nuclear-cap membrane formed. These observations are consistent with the hypothesis that flagellar membranes and cleavage furrows are derived from trans-Golgi equivalents, whereas the nuclear-cap membrane is derived from the endoplasmic reticulum. Key words: Allomyces macrogynus, Chytridiomycetes, endoplasmic reticulum, gametogenesis, zoosporogenesis.


1969 ◽  
Vol 43 (1) ◽  
pp. 80-89 ◽  
Author(s):  
Gustav Niebauer ◽  
Walter S. Krawczyk ◽  
Richard L. Kidd ◽  
George F. Wilgram

Fixation of epidermis with a mixture of osmium tetroxide and zinc iodide (OsO4-ZnI2) for 24 hr renders the central periodic lamella of the Langerhans cell granule (LCG), the Golgi region, and the nuclear envelope of epidermal Langerhans cells preferentially visible. The use of this technique on Langerhans cells in normal epidermis and in epidermis of patients with histiocytosis (Letterer-Siwe disease) allows a broader visualization of the LCG's than was heretofore possible with routine glutaraldehyde-osmium tetroxide fixation and uranyl acetate-lead staining. The identical staining of Golgi apparatus and LCG favors the view that there is close relation between the Golgi area and the LCG's. Different staining characteristics of the LCG's near the Golgi region and at the cell periphery, respectively, may suggest that the LCG undergoes changes on its way from the Golgi area towards the extracellular space. The hypothesis is advanced that the material which is heavily impregnated with metal after fixation with OsO4-ZnI2 might be a lipid.


Sign in / Sign up

Export Citation Format

Share Document