Mechanistically based fatigue-damage evolution model for brittle matrix fibre-reinforced composites

1993 ◽  
Vol 28 (20) ◽  
pp. 5592-5602 ◽  
Author(s):  
V. Ramakrishnan ◽  
N. Jayaraman
Author(s):  
Leila J. Ladani ◽  
A. Dasgupta

This study presents an approach to predict the degree of material degradation and the resulting changes in constitutive properties during cyclic loading in viscoplastic materials in micro-scale applications. The objective in the modeling approach is to address the initiation and growth of distributed micro-damage, in the form of micro-cracks and micro-voids, as a result of cyclic, plastic and creep deformations of material. This study extends an existing micromechanics-based approach, developed for unified viscoplastic models [Wen, et al, 2001], which uses dislocation mechanics to predict damage due to distributed micro-scale fatigue crack initiation [Mura and Nakasone, 1990]. In the present study, the approach is extended to a partitioned viscoplastic framework, because the micro-scale mechanisms of deformation and damage are different for plastic and creep deformation. In this approach, the model constants for estimating cyclic damage evolution are allowed to be different for creep and plastic deformations. A partitioned viscoplastic constitutive model is coupled with an energy partitioning (E-P) damage model [Oyan and Dasgupta, 1992] to assess fatigue damage evolution due to cyclic elastic, plastic and creep deformations. Wen’s damage evolution model is extended to include damage evolution due to both plastic and creep deformations. The resulting progressive degradation of elastic, plastic and creep constitutive properties are continuously assessed and updated. The approach is implemented on a viscoplastic Pb-free solder. Dominant deformation modes in this material are dislocation slip for plasticity and diffusion-assisted dislocation climb/glide for creep. The material’s behavior shows a good correlation with the proposed damage evolution model. Damage evolution constants for plastic and creep deformation were obtained for this Pb-free solder from load drop data collected from the mechanical cycling experiments at different temperatures. The amount of cyclic damage is evaluated and compared with experiment.


2019 ◽  
Vol 9 (23) ◽  
pp. 5251 ◽  
Author(s):  
Yuquan Bao ◽  
Yali Yang ◽  
Hao Chen ◽  
Yongfang Li ◽  
Jie Shen ◽  
...  

The evaluation of fatigue life through the mechanism of fatigue damage accumulation is still a challenging task in engineering structure failure analysis. A multiscale fatigue damage evolution model was proposed for describing both the mesoscopic voids propagation in the mesoscopic-scale and fatigue damage evolution process, reflecting the progressive degradation of metal components in the macro-scale. An effective method of defect classification was used to implement 3D reconstruction technology based on the MCT (micro-computed tomography) scanning damage data with ABAQUS subroutine. The effectiveness was validated through the comparison with the experimental data of fatigue damage accumulation. Our results indicated that the multiscale fatigue damage evolution model built a bridge between mesoscopic damage and macroscopic fracture, which not only used the damage variable in the macro-scale to characterize the mesoscopic damage evolution indirectly but also understood macroscopic material degradation behavior from mesoscale with sufficient precision. Furthermore, the multiscale fatigue damage evolution model could offer a new reasonable explanation of the effect of load sequence on fatigue life, and also could predict the fatigue life based on damage data by nondestructive testing techniques.


Sign in / Sign up

Export Citation Format

Share Document