The relevance of arguments for excluding ALAD from the recommended biological limit values in occupational exposure to inorganic lead (WHO 1980)

1982 ◽  
Vol 50 (4) ◽  
pp. 397-412 ◽  
Author(s):  
S. Telišman ◽  
A. Keršanc ◽  
D. Prpić-Majić
Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3167
Author(s):  
Flavia Buonaurio ◽  
Maria Luisa Astolfi ◽  
Daniela Pigini ◽  
Giovanna Tranfo ◽  
Silvia Canepari ◽  
...  

Urinary concentrations of 16 different exposure biomarkers to metals were determined at the beginning and at the end of a working shift on a group of workers in the metal carpentry industry. Five different oxidative stress biomarkers were also measured, such as the oxidation products of RNA and DNA metabolized and excreted in the urine. The results of workers exposed to metals were compared to those of a control group. The metal concentrations found in these workers were well below the occupational exposure limit values and exceeded the mean concentrations of the same metals in the urine of the control group by a factor of four at maximum. Barium (Ba), mercury (Hg), lead (Pb) and strontium (Sr) were correlated with the RNA oxidative stress biomarker, 8-oxo-7, 8-dihydroguanosine (8-oxoGuo), which was found able to discriminate exposed workers from controls with a high level of specificity and sensitivity. The power of this early diagnostic technique was assessed by means of the ROC curve. Ba, rubidium (Rb), Sr, tellurium (Te), and vanadium (V) were correlated with the level of the protein oxidation biomarker 3-Nitrotyrosine (3-NO2Tyr), and Ba, beryllium (Be), copper (Cu), and Rb with 5-methylcytidine (5-MeCyt), an epigenetic marker of RNA damage. These effect biomarkers can help in identifying those workers that can be defined as “occupationally exposed” even at low exposure levels, and they can provide information about the impact that such doses have on their health.


Author(s):  
Martin Harper

Exposure science is underpinned by characterization (measurement) of exposures. In this article, six recent advances in exposure characterization by sampling and analysis are reviewed as tools in the occupational exposure assessment of aerosols. Three advances discussed in detail are (1) recognition and inclusion of sampler wall deposits; (2) development of a new sampling and analytical procedure for respirable crystalline silica that allows non-destructive field analysis at the end of the sampling period; and (3) development of a new sampler to collect the portion of sub-300 nm aerodynamic diameter particles that would deposit in human airways. Three additional developments are described briefly: (4) a size-selective aerosol sampler that allows the collection of multiple physiologically-relevant size fractions; (5) a miniaturized pump and versatile sampling head to meet multiple size-selective sampling criteria; and (6) a novel method of sampling bioaerosols including viruses while maintaining viability. These recent developments are placed in the context of the historical evolution in sampling and analytical developments from 1900 to the present day. While these are not the only advances in exposure characterization, or exposure assessment techniques, they provide an illustration of how technological advances are adding more tools to our toolkit. The review concludes with a number of recommended areas for future research, including expansion of real-time and end-of-shift on-site measurement, development of samplers that operate at higher flow-rates to ensure measurement at lowered limit values, and development of procedures that accurately distinguish aerosol and vapor phases of semi-volatile substances.


2019 ◽  
Vol 35 (6) ◽  
pp. 424-430 ◽  
Author(s):  
Rezvan Zendehdel ◽  
Il Je Yu ◽  
Behnam Hajipour-Verdom ◽  
Zahra Panjali

Aims: Exposure to extremely low frequency magnetic fields (ELF-MF) occurs from natural and artificial sources. Although ELF-MF has been classified as a suspected humans carcinogen agent by the International Agency for Research on Cancer, little is known of the effects of ELF-MF at lower exposure levels of the recommended range. In the present study, DNA damage in the peripheral blood cells of power line workers was investigated. Materials and Methods: Occupational exposure to ELF-MF in a power plant was measured using the National Institute for Occupational Safety and Health (NIOSH) manual. Single-strand breaks (SSBs) in DNA were evaluated in 29 male utility workers as the exposed population and 28 male support personnel as the control subjects using the comet assay. Effects of ELF-MF on subjects were evaluated using DNA percent in tails, tail length, olive length, and tail moment. Results: Occupational exposure levels to ELF-MF in the utility workers were less than the threshold limit values (TLV) recommended by the American Conference of Government Industrial Hygienist (ACGIH). The median value of the magnetic field at the working sites was 0.85 µT. Induction of DNA damage was observed for the exposed workers compared with the controls. Olive length, tail moment, and tail DNA percent increased significantly ( p < 0.05) in the utility workers. Conclusions: Exposure to ELF-MF at levels less than the ACGIH exposure limit can produce DNA strand breaks.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Brett J. Green ◽  
Donald H. Beezhold

Occupational exposure to high-molecular-weight allergens is a risk factor for the development and pathogenesis of IgE-mediated respiratory disease. In some occupational environments, workers are at an increased risk of exposure to fungal enzymes used in industrial production. Fungal enzymes have been associated with adverse health effects in the work place, in particular in baking occupations. Exposure-response relationships have been demonstrated, and atopic workers directly handling fungal enzymes are at an increased risk for IgE-mediated disease and occupational asthma. The utilization of new and emerging fungal enzymes in industrial production will present new occupational exposures. The production of antibody-based immunoassays is necessary for the assessment of occupational exposure and the development of threshold limit values. Allergen avoidance strategies including personal protective equipment, engineering controls, protein encapsulation, and reduction of airborne enzyme concentrations are required to mitigate occupational exposure to fungal enzymes.


Sign in / Sign up

Export Citation Format

Share Document