scholarly journals Testing the coherence between occupational exposure limits for inhalation and their biological limit values with a generalized PBPK-model: The case of 2-propanol and acetone

2014 ◽  
Vol 69 (3) ◽  
pp. 408-415 ◽  
Author(s):  
Daan Huizer ◽  
Mark A.J. Huijbregts ◽  
Joost G.M. van Rooij ◽  
Ad M.J. Ragas
2017 ◽  
Vol 33 (1(91)) ◽  
pp. 97-113
Author(s):  
Andrzej Sapota ◽  
Małgorzata Skrzypińska-Gawrysiak ◽  
ANNA KILANOWICZ

Nitroethane is a colorless oily liquid with a mild fruity odor. It is used mainly as a pro-pellant (e.g., fuel for rockets), and as a solvent or dissolvent agent for cellulose esters, resins (vinyl and alkyd) and waxes, and also in chemical synthesis.Occupational exposure to nitroethane may occur during the process of its production and processing. There are no data on air concentra-tions of nitroethane in occupational exposure. In 2010–2015, workers in Poland were not exposed to nitroethane concentrations exceed-ing the maximum allowable value – 75 mg/m3 (the limit value valid since 2010).Nitroethane can be absorbed into the body via inhalation of its vapors or by ingestion.The discussed cases of nitroethane acute poi-soning caused by an accidental ingestion of artificial fingernail remover containing pure nitroethane concerned children under three years. Few hours after ingestion, cyanosis and sporadic vomiting were observed in children. The methemoglobin level reached 40÷50%.Neither data on chronic nitroethane poisoning in humans nor data obtained from epidemio-logical studies are available.On the basis of the results of acute toxicity studies nitroethane has been categorized in the group of hazardous compounds. However, eye and dermal irritation or allergic effects have not been evidenced. The studies of sub-chronic (4 and 90 days) and chronic (2 years) exposure to nitroethane per-formed on rats and mice (concentration range 310 ÷ 12 400 mg/m3) revealed the methemo-globinogenic effect of this compound and a minor damage to liver, spleen, salivary gland and nasal turbinates.Niroethane has shown neither mutagenic nor carcinogenic effects. Its influence on fertility has not been evidenced either. After chronic exposure (2 years) of rats to ni-troethane at concentration of 525 mg/m3 (the lowest observed adverse effect level – LOAEL), a slight change in a body mass of exposed fe-male animals and subtle changes in biochemi-cal parameters were observed, but there were no anomalies in hematological and histopatho-logical examinations.The value of 62 mg/m3 has been suggested to be adopted as the MAC value for nitroethane after applying the LOAEL value of 525 mg/m3 and relevant coefficients of uncertainty. The STEL value for nitroethane was proposed ac-cording to the methodology for determining short term exposure level value for irritating substances as three times MAC value (186 mg/m3) to prevent the effects of sensory irri-tations in humans. Because of its methemoglo-binogenic effect, 2% Met-Hb has been suggest-ed to be adopted as the value of biological ex-posure index (BEI), like the value already adopted for all methemoglobinogenic sub-stances.The Scientific Committee on Occupational Exposure Limits (SCOEL) proposed the time-weighted average (TWA) for nitroethane (8 h) as 62 mg/m3 (20 ppm), short-term exposure limit (STEL, 15 min) as 312 mg/m3 (100 ppm) and “skin” notation.Proposed OEL and STEL values for nitroethane were subjected to public consultation, con-ducted in 2011 by contact points, during which Poland did not raise any objections to the pro-posals. The proposed values for nitroethane by SCOEL has been adopted by the Advisory Committee on Safety and Health at Work UE (ACSH) and included in the draft directive establishing the IV list of indicative occupa-tional exposure limit values.


2021 ◽  
pp. 016224392110153
Author(s):  
Emmanuel Henry

Strongly grounded in scientific knowledge, the instrument known as occupational exposure limits or threshold limit values has changed government modalities of exposure to hazardous chemicals in workplaces, transforming both the substance of the problem at hand and the power dynamics between the actors involved. Some of the characteristics of this instrument favor the interests of industries at the expense of employees, their representatives, and the authorities in charge of regulating these risks. First, this instrument can be analyzed as a boundary object that has very different uses in space and time. In particular, it is increasingly masking its industrial origins to appear as an instrument that is almost exclusively based on scientific rationale. In the case of asbestos and its substitutes, the use of an instrument relying on scientific expertise generates a specific temporality of implementation that allows manufacturers to take advantage of periods during which regulations are either nonexistent or very loose. Finally, the choice of a technoscientific definition of the issues contributes to shifting the negotiations to a field where companies are in a position of strength and their opponents are weakened.


Author(s):  
Inese Mārtiņsone ◽  
Mārīte-Ārija Baķe ◽  
Žanna Martinsone ◽  
Maija Eglīte

Possible hazards of work environment in metal processing industry in Latvia The aim of this study was to investigate risk factors in the work environment of Latvian metal processing industry using the database of the Laboratory of Hygiene and Occupational Diseases of the Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University. During the period between 1996 and 2005, 703 measurements were made in metalworking enterprises. In Latvia, approximately 2.4% of the workforce is involved in the metal processing industry. Physical (noise, lighting, vibration) and chemical (abrasive dust, welding aerosol and contained metals) risk factors were analysed. In the assessed metalworking workplaces, the work environment was estimated to be of poor quality, because occupational exposure limits or recommended values were exceeded in 42% (n = 294) of cases. Noise, manganese and welding aerosols most often exceeded the occupational exposure limits or recommended values, the significance was P < 0.001, P < 0.01 and P < 0.05, respectively.


Sign in / Sign up

Export Citation Format

Share Document