Control of the developmental pathway of tobacco pollen in vitro

Planta ◽  
1986 ◽  
Vol 168 (4) ◽  
pp. 427-432 ◽  
Author(s):  
M. Kyo ◽  
H. Harada
2002 ◽  
Vol 30 (3) ◽  
pp. 323-329 ◽  
Author(s):  
Udo Kristen ◽  
Natalie Bischoff ◽  
Saskia Lisboa ◽  
Enno Schirmer ◽  
Sören Witt ◽  
...  

Tobacco pollen tubes were used as a standard in vitro system to investigate cell growth aberrations caused by some of the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme chemicals and other toxic compounds. Changes in cytoskeletal pattern were observed in the tube cells by using tubu-lin immunofluorescence and rhodamin–phalloidin fluorescence for the localisation of microtubules and actin filaments, respectively. Four different types of cell malformation were found: screw-like growth, isodiametric tip swelling, hook formation, and pollen grain enlargement. We suggest that these malformations resulted from an interference by the chemicals with the cytosolic calcium gradient which controls tip growth and the orientation of the pollen tube. The results may contribute to a general understanding of toxicity-based cell malformations.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2534-2534
Author(s):  
Akira Niwa ◽  
Tomoki Fukatsu ◽  
Katsutsugu Umeda ◽  
Itaru Kato ◽  
Hiromi Sakai ◽  
...  

Abstract Abstract 2534 Poster Board II-511 Induced pluripotent stem (iPS) cells, reprogrammed somatic cells with embryonic stem (ES) cell–like characteristics, are generated by the introduction of combinations of specific transcription factors. Despite the controversy surrounding the gene manipulation, it is expected that iPS cells should contribute to regenerative medicine, disease investigation, drug screening, toxicology, and drug development in future. In the fields of hematology, iPS cells could become used as a new feasible source for transplantation therapy without immunological barrier and for the investigation of various kinds of hematological defects. Previous studies on ES / iPS cells have already demonstrated that they can develop into various lineages of hematopoietic cells including erythrocytes following the similar processes occurred in embryo and fetus. However, it is important to establish the more effective system for developing functional blood cells. Here we present the methods for selectively inducing mature red blood cells from ES / iPS cells in vitro, and show the functional equality of them to natural blood cells. First, Flk1+ mesodermal progenitors were derived from ES / iPS cells on OP9 stromal cells at an efficacy of more than 50% and collected by fluorescence activated cell sorter. Then, those sorted cells were cultured in the presence of exogenous erythropoietin and stem cell factor. They highly selectively developed into erythroid lineages including enucleated red blood cells. Sequential FACS analysis using the antibodies against transferrin receptor CD71 and erythroid specific antigen Ter119 in combination with DNA staining dye Hoechst 33342 demonstrated that ES / iPS cell-derived erythropoiesis in our system follow the normal erythroid developmental pathway occurred in vivo. RT-PCR and Western blot analyses proved the expression of heme biosynthesis enzymes on the produced erythrocytes. Finally, the oxygen dissociation curve showed that ES / iPS cell-derived erythroid cells are functionally virtually equivalent to natural red blood cells as oxygen carriers. Taken together, our system can present the effective methods of investigating the mechanisms of normal erythropoiesis and the deficits in syndromes with disrupted red blood cell production. Disclosures: No relevant conflicts of interest to declare.


1992 ◽  
Vol 5 (4) ◽  
pp. 304-309 ◽  
Author(s):  
M. M. A. Van Herpen ◽  
P. F. M. de Groot ◽  
J. A. M. Schrauwen ◽  
K. J. P. T. van den Heuvel ◽  
K. A. P. Weterings ◽  
...  

Nematology ◽  
2016 ◽  
Vol 18 (7) ◽  
pp. 857-870 ◽  
Author(s):  
Tagginahalli N. Shivakumara ◽  
Pradeep K. Papolu ◽  
Tushar K. Dutta ◽  
Divya Kamaraju ◽  
Sonam Chaudhary ◽  
...  

The sophisticated parasitic tactic of sedentary endoparasitic nematodes seems to involve the simultaneous alteration of the expression of multitude of its effector genes in order to hijack the plant metabolic and developmental pathway. In concordance with this hypothesis, we have targeted some candidate effector genes of Meloidogyne incognita to understand the possible interaction among those effectors for successful infection of the host plant. In vitro RNAi strategy was used to knock down M. incognita-specific pioneer effector genes, such as msp-18, msp-20, msp-24, msp-33 and msp-16 (known to interact with plant transcription factor), to investigate their possible effect on the expression of key cell wall-degrading enzymes (CWDE) and vice versa. Supported by the phenotypic data, intriguingly our study revealed that induced suppression of these pioneer genes cause transcriptional alteration of CWDE genes in M. incognita. This remarkable finding may provide some useful links for future research on nematode effector interaction.


Sign in / Sign up

Export Citation Format

Share Document