Molecular cloning of genes expressed specifically during induction of cell wall degrading enzymes from Sclerotinia sclerotiorum and preliminary identification of a fungal beta-galactosidase encoding gene by expression in Escherichia coli

1988 ◽  
Vol 14 (1) ◽  
pp. 91-93 ◽  
Author(s):  
Gabriel Waksman
2014 ◽  
Vol 36 (10) ◽  
pp. 2095-2101 ◽  
Author(s):  
Rogério Fraga Troian ◽  
Andrei Stecca Steindorff ◽  
Marcelo Henrique Soller Ramada ◽  
Walquiria Arruda ◽  
Cirano José Ulhoa

2021 ◽  
Author(s):  
Louise Emma Crozier ◽  
Jacqueline Marshall ◽  
Ashleigh Holmes ◽  
Kathryn Wright ◽  
Yannick Rossez ◽  
...  

Arabinose is a major plant aldopentose in the form of arabinans complexed in cell wall polysaccharides or glycoproteins (AGP), but comparatively rare as a monosaccharide. L-arabinose is an important bacterial metabolite, accessed by pectolytic microorganisms such as Pectobacterium atrosepticum via pectin and hemicellulose degrading enzymes. However, not all plant-associated microbes encode cell wall degrading enzymes, yet can metabolise L-arabinose, raising questions about their use of and access to the glycan in plants. Therefore, we examined L-arabinose metabolism in the food-borne pathogen Escherichia coli O157:H7 (isolate Sakai) during its colonisation of plants. L-arabinose metabolism (araBA) and transport (araF) genes were activated at 18 C in vitro by L-arabinose and expressed over prolonged periods in planta. Although deletion of araBAD did not impact the colonisation ability of E. coli O157:H7 (Sakai) on plants, araA was induced on exposure to spinach cell wall polysaccharides. Furthermore, debranched and arabinan oligosaccharides induced ara metabolism gene expression in vitro, and stimulated modest proliferation, while immobilised pectin did not. Thus, E. coli O157:H7 (Sakai) can utilise pectin/AGP-derived L-arabinose as a metabolite, but differs fundamentally in ara gene organisation, transport and regulation from the related pectinolytic species P. atrosepticum, reflective of distinct plant-associated lifestyles.


2019 ◽  
Author(s):  
Huizhang Zhao ◽  
Ting Zhou ◽  
Jiatao Xie ◽  
Jiasen Cheng ◽  
Tao Chen ◽  
...  

Abstract BackgroundConiothyrium minitans is a mycoparasite of the notorious plant pathogen Sclerotinia sclerotiorum. To further understand the parasitism of C. minitans, here, we assembled and analyzed its genome by combining transcriptome data.ResultsThe genome of C. minitans strain ZS-1 was 39.77 Mb in 350 scaffolds. A total of 11437 predicted genes and proteins were annotated, and 30.8% of blast hits matched proteins encoded by Paraphaeosphaeria sporulosa, a worldwide soil fungus. The transcriptome of strain ZS-1 during the early interaction at 0 h, 4 h and 12 h with its host was analyzed. The detected expressed genes were involved in response to host defenses, including cell wall-degrading enzymes, transporters, secretory proteins and secondary metabolites. The fungal cell wall-degrading enzymes belonged to the GH16, GH18, and GH72 classes in CAZymes, and some were significantly up-regulated during mycoparasitism. Most of the monocarboxylate transporter genes of the major facilitator superfamily and all the detected ABC transporters, especially the heavy metal transporters, were significantly up-regulated. Approximately 8% of the 11437 proteins in C. minitans were predicted to be secretory proteins, with catalytic activity, hydrolase activity, peptidase activity and serine hydrolase activity enriched in molecular function. Most genes involved in serine hydrolase activity were significantly up-regulated during mycoparasitism.ConclusionThis assemble genome and genome-wide expression study demonstrate that the mycoparasitism process of C. minitans is complex and a series of genes or proteins would be deployed by C. minitans to invade successfully the host. Our study provides insights into the mechanisms of the mycoparasitism between C. minitans and S. sclerotiorum and clues to excavate active secondary metabolites from C. minitans.


Microbiology ◽  
2021 ◽  
Vol 167 (7) ◽  
Author(s):  
Louise Crozier ◽  
Jacqueline Marshall ◽  
Ashleigh Holmes ◽  
Kathryn Mary Wright ◽  
Yannick Rossez ◽  
...  

Arabinose is a major plant aldopentose in the form of arabinans complexed in cell wall polysaccharides or glycoproteins (AGP), but comparatively rare as a monosaccharide. l-arabinose is an important bacterial metabolite, accessed by pectolytic micro-organisms such as Pectobacterium atrosepticum via pectin and hemicellulose degrading enzymes. However, not all plant-associated microbes encode cell-wall-degrading enzymes, yet can metabolize l-arabinose, raising questions about their use of and access to the glycan in plants. Therefore, we examined l-arabinose metabolism in the food-borne pathogen Escherichia coli O157:H7 (isolate Sakai) during its colonization of plants. l-arabinose metabolism (araBA) and transport (araF) genes were activated at 18 °C in vitro by l-arabinose and expressed over prolonged periods in planta. Although deletion of araBAD did not impact the colonization ability of E. coli O157:H7 (Sakai) on spinach and lettuce plants (both associated with STEC outbreaks), araA was induced on exposure to spinach cell-wall polysaccharides. Furthermore, debranched and arabinan oligosaccharides induced ara metabolism gene expression in vitro, and stimulated modest proliferation, while immobilized pectin did not. Thus, E. coli O157:H7 (Sakai) can utilize pectin/AGP-derived l-arabinose as a metabolite. Furthermore, it differs fundamentally in ara gene organization, transport and regulation from the related pectinolytic species P. atrosepticum , reflective of distinct plant-associated lifestyles.


2012 ◽  
Vol 50 (5) ◽  
pp. 798-806 ◽  
Author(s):  
Adriana Fróes ◽  
Andrew Macrae ◽  
Juliana Rosa ◽  
Marcella Franco ◽  
Rodrigo Souza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document