Comparison of the fatigue behaviour of an Al-Zn-Mg-Cu alloy (7010) in the form of squeeze and chill castings and rolled plate

1990 ◽  
Vol 25 (1) ◽  
pp. 175-182 ◽  
Author(s):  
T. M. Yue
2010 ◽  
Vol 442 ◽  
pp. 88-95
Author(s):  
M. Afzal ◽  
M. Ajmal ◽  
T.Z. Butt

Ni-Cu alloy was developed by melting in a vacuum induction furnace using pure elements i.e., Ni, Cu, Fe, Si, Mn and Cr. Four heats of approximately 4 kg each were prepared. All the heats have been casted in an ingot of 10 cm long and 5 cm in diameter in vacuum. These ingots were hot forged at a temperature of 900°C to break down the cast dendritic structure. All forged plates were cut into two halve. One half was rolled in unidirectional while other was rolled in multiple directions (cross rolling). During rolling after every 25 % reduction, the cold rolled samples were annealed at a temperature of 900°C for one hour. Each plate was cold rolled to a final thickness of 0.345 mm. Half of these rolled plate produced either by cross rolling or unidirectional rolling were annealed at 900°C for 20 minutes. The mechanical properties of each rolled plate in cold reduction and in annealed were also measured. Unidirectional rolling and cross rolling has almost similar mechanical properties. The annealing of cross rolled and unidirectional rolling drastically reduced the yield strength. It was observed that the Ni-Cu alloy produced has slightly lower yield and ultimate tensile strength compared to the values reported in standards of Monel-400. However, it is within the acceptable range to be used for the various applications.


Author(s):  
Shrikant P. Bhat

deformation behavior of Al-Cu alloys aged to contain θ ' has been the subject of many investigations (e.g., Ref. 1-5). Since θ ' is strong and hard, dislocations bypass θ ' plates (Orowan mechanism) at low strains. However, at high strains the partially coherent θ ' plates are probably sheared, although the mechanism is complex, depending on the form of deformation. Particularly, the cyclic straining of the bulk alloy is known to produce gross bends and twists of θ '. However, no detailed investigation of the deformation of θ ' has yet been reported; moreover, Calabrese and Laird interpreted the deformation of θ ' as largely being elastic.During an investigation of high temperature cyclic deformation, the detailed electron-microscopic observation revealed that, under reversed straining conditions, θ ' particles are severely distorted--bent and twisted depending on the local matrix constraint. A typical electronmicrograph, showing the twist is shown in Fig. 1. In order to establish whether the deformation is elastic or plastic, a sample from a specimen cycled at room temperature was heated inside the microscope and the results are presented in a series of micrographs (Fig. 2a-e).


Author(s):  
Atul S. Ramani ◽  
Earle R. Ryba ◽  
Paul R. Howell

The “decagonal” phase in the Al-Co-Cu system of nominal composition Al65CO15Cu20 first discovered by He et al. is especially suitable as a topic of investigation since it has been claimed that it is thermodynamically stable and is reported to be periodic in the dimension perpendicular to the plane of quasiperiodic 10-fold symmetry. It can thus be expected that it is an important link between fully periodic and fully quasiperiodic phases. In the present paper, we report important findings of our transmission electron microscope (TEM) study that concern deviations from ideal decagonal symmetry of selected area diffraction patterns (SADPs) obtained from several “decagonal” phase crystals and also observation of a lattice of main reflections on the 10-fold and 2-fold SADPs that implies complete 3-dimensional lattice periodicity and the fundamentally incommensurate nature of the “decagonal” phase. We also present diffraction evidence for a new transition phase that can be classified as being one-dimensionally quasiperiodic if the lattice of main reflections is ignored.


Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


1987 ◽  
Vol 48 (C6) ◽  
pp. C6-349-C6-354
Author(s):  
K. Hono ◽  
T. Sakurai ◽  
H. W. Pickering

1987 ◽  
Vol 48 (C3) ◽  
pp. C3-745-C3-751 ◽  
Author(s):  
J. SCHNEIDER ◽  
H.-J. GUDLADT ◽  
V. GEROLD

Sign in / Sign up

Export Citation Format

Share Document