Corrosion resistance of low-cost stainless steel alloys in softened water

1983 ◽  
Vol 15 (2) ◽  
pp. 154-157
Author(s):  
A. V. Semenyuk ◽  
G. V. Sretenskaya
Author(s):  
Philip J. Maziasz ◽  
Robert W. Swindeman

Recuperators are considered essential hardware to achieve the efficiencies desired for advanced microturbines. Compact recuperator technologies, including primary surface, plate and fin, and spiral, all require thin section materials that have high-temperature strength and corrosion resistance up to 750°C or above, and yet remain as low-cost as possible. The effects of processing and microstructure on creep-rupture resistance at 750°C and 100 MPa were determined for a range of austenitic stainless alloys made into 0.1 mm foils. Two groups of alloys were identified with regard to improved creep-resistance relative to type 347 stainless steel. Alloys with better creep-rupture resistance included alloys 120, 230, modified 803 and thermie-alloy, while alloy 214 and 625 exhibited much better creep strength. Alloys 120 and modified 803 appeared to have the most cost-effective improvements in creep-strength relative to type 347 stainless steel, and should be attractive for advanced microturbine recuperator applications.


2002 ◽  
Vol 125 (1) ◽  
pp. 310-315 ◽  
Author(s):  
P. J. Maziasz ◽  
R. W. Swindeman

Recuperators are considered essential hardware to achieve the efficiencies desired for advanced microturbines. Compact recuperator technologies, including primary surface, plate and fin, and spiral, all require thin section materials that have high-temperature strength and corrosion resistance up to 750°C or above, and yet remain as low cost as possible. The effects of processing and microstructure on creep-rupture resistance at 750°C and 100 MPa were determined for a range of austenitic stainless alloys made into 0.1-mm foils. Two groups of alloys were identified with regard to improved creep resistance relative to type 347 stainless steel. Alloys with better creep-rupture resistance included alloys 120, 230, modified 803 and alloy 740 (formerly thermie-alloy), while alloy 214 and 625 exhibited much better creep strength. Alloys 120 and modified 803 appeared to have the most cost-effective improvements in creep strength relative to type 347 stainless steel, and should be attractive for advanced microturbine recuperator applications.


Alloy Digest ◽  
2020 ◽  
Vol 69 (12) ◽  

Abstract Outokumpu Moda 410L/4003 is a weldable, extra low carbon, Cr-Ni, ferritic stainless steel that is best suited for mildly corrosive environments such as indoors, where the material is either not exposed to contact with water or gets regularly wiped dry, or outdoors, where some discoloration and superficial rusting are acceptable. It is a low-cost alternative to low-carbon non-alloy steels in certain applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-1330. Producer or source: Outokumpu Oyj.


Alloy Digest ◽  
1997 ◽  
Vol 46 (5) ◽  

Abstract Duracorr is low-cost, utilitarian 11% Cr stainless steel with more corrosion resistance and life-cycle cost advantages than weathering steels. The steel may be used where a combination of abrasion and corrosion resistance is required. This datasheet provides information on composition, physical properties, microstructure, hardness, tensile properties, and bend strength as well as fracture toughness. It also includes information on corrosion resistance as well as joining. Filing Code: SS-680. Producer or source: Lukens Steel Company.


2014 ◽  
Vol 798-799 ◽  
pp. 328-333 ◽  
Author(s):  
Gustavo Alberto Ludwig ◽  
Matias Angelis Korb ◽  
A. Bervian ◽  
C.P. Bergmann ◽  
Célia de Fraga Malfatti

Ferritic stainless steels exhibit properties, such as good electrical conductivity, good corrosion resistance and low cost, that are beneficial for their application as interconnects in intermediate temperature solid oxide fuel cells (ITSOFC) that function at temperatures between 600°C and 800°C. However, the stainless steel corrosion resistance is attributed to the amount of Cr, which is an element that forms a chromium oxide (Cr2O3) layer, acts as an oxidation protective barrier at high temperatures, and reduces the interconnector performance due to its low electrical conductivity. In this context, the objective of this work was to obtain spinel coatings from the Fe and Ni metallic alloy thermal conversion on AISI stainless steel 430 substrate produced by electrodeposition. The morphology and microstructure of the spinel films deposited on stainless steel were characterized by SEM, EDS, XRD and adherence analysis. The results obtained showed that the films were adherent, dense and continuous along the AISI stainless steel 430 substrate surface. In addition, the heat treatment procedure effectively produced crystalline spinels ((NiFe)3O4).


Alloy Digest ◽  
2007 ◽  
Vol 56 (4) ◽  

Abstract This revision covers Alcoa’s high-strength aluminum sheet alloy for computer and electronics applications. This temper produces an alloy with strength and dent resistance similar to that offered by austenitic stainless steel alloys. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: AL-276. Producer or source: Alcoa Mill Products. Originally published as ALCOA 5182 ALLOY, January 1987, revised March 2007.


Alloy Digest ◽  
2004 ◽  
Vol 53 (10) ◽  

Abstract Duracorr 300 is low-cost, utilitarian 12% Cr stainless steel with more corrosion resistance and life-cycle cost advantages than weathering steels. The steel may be used where a combination of abrasion and corrosion resistance is required. The nominal hardness is 300 HB. This datasheet provides information on composition, microstructure, and hardness as well as fracture toughness. It also includes information on forming and joining. Filing Code: SS-912. Producer or source: ISG Plate.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
A. Bahrawy ◽  
Mohamed El-Rabiei ◽  
Hesham Elfiky ◽  
Nady Elsayed ◽  
Mohammed Arafa ◽  
...  

Purpose The commercial stainless steels have been used extensively in the biomedicine application and their electrochemical behaviour in the simulated body fluid (SBF) are not uncovered obviously. In this research, the corrosion resistance of the commercial stainless steel of Fe–17Cr–xNi alloys (x = 4, 8, 10 and 14) has been studied. This study aims to evaluate the rate of corrosion and corrosion resistance of some Fe–Cr–Ni alloys in SBF at 37°C. Design/methodology/approach In this research, the corrosion resistance of the commercial stainless steel of Fe–17Cr–xNi alloys has been studied using open circuit potential, electrochemical impedance spectroscopy and potentiodynamic polarization in the SBF at 37°C and pH 7.4 for a week. Also, the surface morphology of the four alloys was investigated using scanning electron microscopy, elemental composition was obtained via energy dispersive spectroscopy and the crystal lattice structure of Fe–17Cr–xNi alloys was obtained using X-ray diffraction technique. The chemical structure of the protective oxide film has been examined by X-ray photoelectron spectroscopy (XPS) and metals ions released into the solution have been detected after different immersion time using atomic absorption spectroscopy. Findings The results revealed that the increase of the Ni content leads to the formation of the stable protective film on the alloys such as the Fe–17Cr–10Ni and Fe–17Cr–14Ni alloys which possess solid solution properties. The Fe–17Cr–14Ni alloy displayed highest resistance of corrosion, notable resistance for localized corrosion and the low corrosion rate in SBF because of the formation of a homogenously protective oxide film on the surface. The XPS analysis showed that the elemental Fe, Cr and Ni react with the electrolyte medium and the passive film is mainly composed of Cr2O3 with some amounts of Fe(II) hydroxide at pH 7.4. Originality/value This work includes important investigation to use commercial stainless steel alloys for biomedical application.


Sign in / Sign up

Export Citation Format

Share Document