Zooplankton excretion and NH 4 + cycling in near-surface waters of the Southern Ocean. I. Ross sea, austral summer 1977?1978

Polar Biology ◽  
1982 ◽  
Vol 1 (1) ◽  
pp. 55-67 ◽  
Author(s):  
D. C. Biggs



2015 ◽  
Vol 12 (11) ◽  
pp. 8429-8465 ◽  
Author(s):  
H. B. DeJong ◽  
R. B. Dunbar ◽  
D. A. Mucciarone ◽  
D. A. Koweek

Abstract. Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high resolution carbon system data. Here we present ~ 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February–March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (ΩCa) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of ~ 1.2 for the Ross Sea using a total alkalinity–salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.



2020 ◽  
Vol 8 (7) ◽  
pp. 488
Author(s):  
Evgeny A. Pakhomov ◽  
Leonid K. Pshenichnov ◽  
Anatoly Krot ◽  
Valery Paramonov ◽  
Ilia Slypko ◽  
...  

Preliminary results of the pilot study of the zooplankton in the region between the Ross and Scotia Seas from November 2017 to April 2018 are presented. In total, 53 zooplankton samples were collected in the top 100 m water layer using vertical tows of a 0.1 m2 Juday net from four Ukrainian longliners operating during the Antarctic toothfish fishery. Total zooplankton abundance ranged from 3 to 2836 ind m−3 with a global mean of 360 ± 550 (±1 SD) ind m−3. The highest abundances were recorded at the northeastern Ross Sea. At those stations, small copepods (mainly Oithona spp., Oncaea spp., Ctenocalanus spp. and copepod nauplii) numerically dominated the samples. Total biomass ranged from 0.3 to 85 mg DW m−3 with a mean of 10.9 ± 14.5 mg DW m−3. The highest biomasses were recorded at the eastern Ross Sea, where pelagic tunicates Salpa thompsoni, siphonophores and ctenophora Callianira sp. accounted for >90% of total zooplankton biomass. At other stations, zooplankton biomass generally ranged from 5 to 20 mg DW m−3 with no clear pattern in distribution. The community composition was driven by the sampling latitude and/or season rather than longitudinally. This pilot study emphasized the unique opportunity to investigate zooplankton dynamics in the regions traditionally not sampled during the oceanographic surveys. It also created unprecedented opportunities to increase the seasonal and geographical zooplankton sampling coverage using ships of opportunity at a fraction of a dedicated oceanographic survey costs. The potential of such surveys are enormous in both providing invaluable information, contributing to existing long-term databases and enhancing an international collaboration in the Southern Ocean, particularly in light of recent modeling initiatives of the whole Antarctic system undertaken by the Commission for the Conservation of Antarctic Marine Living Resources.



Polar Biology ◽  
2010 ◽  
Vol 34 (2) ◽  
pp. 257-271 ◽  
Author(s):  
E. A. Pakhomov ◽  
J. Hall ◽  
M. J. M. Williams ◽  
B. P. V. Hunt ◽  
C. J. Stevens


2015 ◽  
Vol 12 (23) ◽  
pp. 6881-6896 ◽  
Author(s):  
H. B. DeJong ◽  
R. B. Dunbar ◽  
D. Mucciarone ◽  
D. A. Koweek

Abstract. Predicting when surface waters of the Ross Sea and Southern Ocean will become undersaturated with respect to biogenic carbonate minerals is challenging in part due to the lack of baseline high-resolution carbon system data. Here we present ~ 1700 surface total alkalinity measurements from the Ross Sea and along a transect between the Ross Sea and southern Chile from the austral autumn (February–March 2013). We calculate the saturation state of aragonite (ΩAr) and calcite (Ω Ca) using measured total alkalinity and pCO2. In the Ross Sea and south of the Polar Front, variability in carbonate saturation state (Ω) is mainly driven by algal photosynthesis. Freshwater dilution and calcification have minimal influence on Ω variability. We estimate an early spring surface water ΩAr value of ~ 1.2 for the Ross Sea using a total alkalinity–salinity relationship and historical pCO2 measurements. Our results suggest that the Ross Sea is not likely to become undersaturated with respect to aragonite until the year 2070.



Geophysics ◽  
1992 ◽  
Vol 57 (10) ◽  
pp. 1359-1372 ◽  
Author(s):  
Bruce C. Beaudoin ◽  
Uri S. ten Brink ◽  
Tim A. Stern

Coincident reflection and refraction data, collected in the austral summer of 1988/89 by Stanford University and the Geophysical Division of the Department of Scientific and Industrial Research, New Zealand, imaged the crust beneath the Ross Ice Shelf, Antarctica. The Ross Ice Shelf is a unique acquisition environment for seismic reflection profiling because of its thick, floating ice cover. The ice shelf velocity structure is multilayered with a high velocity‐gradient firn layer constituting the upper 50 to 100 m. This near surface firn layer influences the data character by amplifying and frequency modulating the incoming wavefield. In addition, the ice‐water column introduces pervasive, high energy seafloor, intra‐ice, and intra‐water multiples that have moveout velocities similar to the expected subseafloor primary velocities. Successful removal of these high energy multiples relies on predictive deconvolution, inverse velocity stack filtering, and frequency filtering. Removal of the multiples reveals a faulted, sedimentary wedge which is truncated at or near the seafloor. Beneath this wedge the reflection character is diffractive to a two‐way traveltime of ∼7.2 s. At this time, a prominent reflection is evident on the southeast end of the reflection profile. This reflection is interpreted as Moho indicating that the crust is ∼21-km thick beneath the profile. These results provide seismic evidence that the extensional features observed in the Ross Sea region of the Ross Embayment extend beneath the Ross Ice Shelf.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyung Min Noh ◽  
Hyung-Gyu Lim ◽  
Jong-Seong Kug

AbstractAntarctic marine biological variability modulates climate systems via the biological pump. However, the knowledge of biological response in the Southern Ocean to climate variability still has been lack of understanding owing to limited ocean color data in the high latitude region. We investigated the surface chlorophyll concentration responses to the Southern annular mode (SAM) in the marginal sea of the Southern ocean using satellite observation and reanalysis data focusing on the austral summer. The positive phase of SAM is associated with enhanced and poleward-shifted westerly winds, leading to physical and biogeochemical responses over the Southern ocean. Our result indicates that chlorophyll has strong zonally asymmetric responses to SAM owing to different limiting factors of phytoplankton growth per region. For the positive SAM phase, chlorophyll tends to increase in the western Amundsen–Ross Sea but decreases in the D’Urville Sea. It is suggested that the distinct limiting factors are associated with the seasonal variability of sea ice and upwelling per region.



2022 ◽  
Author(s):  
Wangwang Ye ◽  
Hermann W. Bange ◽  
Damian L. Arévalo-Martínez ◽  
Hailun He ◽  
Yuhong Li ◽  
...  


2022 ◽  
Author(s):  
Wangwang Ye ◽  
Hermann W. Bange ◽  
Damian L. Arévalo-Martínez ◽  
Hailun He ◽  
Yuhong Li ◽  
...  

Abstract. Dissolved methane (CH4) was measured at 9 stations along a transect at 75° S in the Ross Sea during austral summer in January 2020. CH4 undersaturation (mean: 82 ± 20 %) was found in the water column, with a mean air-sea CH4 flux density of −0.58 ± 0.48 μmol m−2 day−1, which suggests that the Ross Sea was a net sink for atmospheric CH4 during the austral summer. Simple box-model calculations revealed that the CH4 depletion should occur in the surface mixed layer because of CH4 oxidation and advection of CH4-poor waters. We propose that freshwater injection caused by sea-ice melting in summer dilutes CH4 concentrations within the surface layer and thus increases its potential for atmospheric CH4 uptake in the Ross Sea. Thus, we argue that both CH4 consumption and sea-ice melting are important drivers of CH4 undersaturation, which implies that the high-latitude area of the Southern Ocean is a sink for atmospheric CH4. We estimated that the Southern Ocean (> 65° S) takes up about 0.02 % of the global CH4 emissions and thus represents a minor sink for atmospheric CH4.



2021 ◽  
Author(s):  
Angelina Cordone ◽  
Giuseppe D'Errico ◽  
Maria Magliulo ◽  
Francesco Bolinesi ◽  
Matteo Selci ◽  
...  

Primary productivity in the Ross Sea region is characterized by intense phytoplankton blooms whose temporal and spatial distribution are driven by changes in environmental conditions as well as interactions with the bacterioplankton community. Exchange of exudates, metabolism by-products and cofactors between the phytoplankton and the bacterioplankton communities drive a series of complex interactions affecting the micronutrient availability and co-limitation, as well as nutrient uptakes in Antarctic waters. Yet, the number of studies reporting the simultaneous diversity of the phytoplankton and bacterioplankton in Antarctic waters are limited. Here we report data on the bacterial diversity in relation to phytoplankton community in the surface waters of the Ross Sea during the austral summer 2017. Our results show partially overlapping bacterioplankton communities between the stations located in the Terra Nova Bay coastal waters and the Ross Sea open waters, suggesting that the two communities are subjected to different drivers. We show that the rate of diversity change between the two locations is influenced by both abiotic (salinity and the nitrogen to phosphorus ratio) and biotic (phytoplankton community structure) factors. Our data provides new insight into the coexistence of the bacterioplankton and phytoplankton in Antarctic waters.



Sign in / Sign up

Export Citation Format

Share Document