3H-Ouabain binding sites in porcine skeletal muscle as influenced by environmental temperature and energy intake

1989 ◽  
Vol 414 (3) ◽  
pp. 317-323 ◽  
Author(s):  
M. J. Dauncey ◽  
K. A. Burton
1997 ◽  
Vol 152 (1) ◽  
pp. 49-57 ◽  
Author(s):  
I Dørup ◽  
T Clausen

Abstract Since adrenal steroids have been shown to upregulate the concentration of Na+–K+-ATPase in cardiac muscle, similar effects could be expected in skeletal muscle. Following infusion of dexamethasone (0·02–0·1 mg/kg per day) for 7 days in 10-week-old rats, the total concentration of [3H]ouabain-binding sites rose by up to 22–42% in soleus, extensor digitorum longus, gastrocnemius and diaphragm muscle. Dexamethasone produced no or minute changes in the Na+–K+ contents of skeletal muscle. In contrast, infusion with aldosterone (0·02–0·5 mg/kg per day) for 7 days produced hypokalemia and a graded reduction in the K+ content of skeletal muscle, which was closely correlated to a downregulation of the [3 H]ouabain-binding site concentration (r= 0·65–0·70; P<0·001). The results indicate that in skeletal muscle high doses of glucocorticoids upregulate the concentration of Na+–K+ pumps whereas mineralocorticoids induce a downregulation, which is secondary to the concomitant K+ deficiency. Since adrenalectomy produced no significant change in [3 H]ouabain-binding site concentration, basal levels of endogenous adrenal steroids seem to be of minor importance for the regulation of Na+–K+ pump concentration in skeletal muscle. Journal of Endocrinology (1997) 152, 49–57


1986 ◽  
Vol 56 (3) ◽  
pp. 519-532 ◽  
Author(s):  
Keld Kjeldsen ◽  
Maria Elisabeth Everts ◽  
Torben Clausen

1. Using vanadate-facilitated [3H]ouabain binding, the effect of semi-starvation on the total concentration of [3H]ouabain-binding sites was determined in samples of rat skeletal muscle. When 12-week-old rats were semi-starved for 1, 2 or 3 weeks on one-third to half the normal daily energy intake, the [3H]ouabain-binding site concentration in soleus muscle was reduced by 19, 24 and 25% respectively. In extensor digitorum longus, diaphragm and gastrocnemius muscles the decrease after 2 weeks of semi-starvation was 15, 18 and 17% respectively. The decrease was fully reversible within 3 d of free access to the diet. Complete deprivation of food for 5 d caused a reduction of 25% in soleus muscle [3H]ouabain-binding-siteconcentration. It was excluded that the reduction in [3H]ouabain binding was due to a reduced affinity of the binding site for [3H]ouabain.2. Semi-starvation of 12-week-old rats for 3 weeks caused a reduction of 45 and 53% in 3, 5, 3'-triiodothyronine (T3) and thyroxine (T4) levels respectively. As reduced thyroid hormone levels have previously been found to decrease [3H]ouabain-binding-siteconcentration in skeletal muscle, this points to the importance of T3 and T4 in the down-regulation of the [3H]ouabain-binding-siteconcentration in skeletal muscle with semi-starvation. Whereas potassium depletion caused a decrease in K content as well as in [3H]ouabain-binding-siteconcentration in skeletal muscles, semi-starvation caused only a tendency to a decrease in K content. Thus, K depletion is not a major cause of the reduction in [3H]ouabain-binding-siteconcentration with semi-starvation.3. Due to its high concentration of Na, K pumps, skeletal muscle has a considerable capacity for clearing K from the plasma as well as for the binding of digitalis glycosides. Semi-starvation causes a severe reduction in the total skeletal muscle pool of Na, K pumps and may therefore be associated with impairment of K tolerance and increased digitalis toxicity.


1979 ◽  
Vol 237 (3) ◽  
pp. E265
Author(s):  
M H Lin ◽  
J G Vander Tuig ◽  
D R Romsos ◽  
T Akera ◽  
G A Leveille

The possible involvement of Na+,K+-ATPase in the etiology of obesity in the obese (ob/ob) mouse was explored. The number of Na+,K+-ATPase enzyme units in skeletal muscle, liver, and kidneys from 4- and 8-wk-old obese and lean mice was estimated from saturable [3H]ouabain binding to particulate fractions. Neither phenotype nor age altered the Kd value for ouabain binding in these three tissue preparations. The total number of [3H]ouabain binding sites in hindlimb muscles was 35--55% lower in 4- and 8-wk-old obese mice than in their lean counterparts. However, the total number of [3H]ouabain binding sites in liver and kidneys of obese mice was similar to values observed in their lean counterparts. Because it has been suggested that ob/ob mice are hypothyroid, we investigated the response of Na+,K+-ATPase in these mice to thyroid hormone treatment (approximately 5 microgram thyroxine/day for 2 wk). The number of [3H]ouabain binding sites in the three tissues increased in both obese and lean mice injected with this relatively large dose of thyroxine, but the obese mice were 2--3 times more responsive than lean mice.


1997 ◽  
Vol 83 (1) ◽  
pp. 323-323 ◽  
Author(s):  
Joel G. Pickar ◽  
John P. Mattson ◽  
Steve Lloyd ◽  
Timothy I. Musch

Pickar, Joel G., John P. Mattson, Steve Lloyd, and Timothy I. Musch. Decreased [3H]ouabain binding sites in skeletal muscle of rats with chronic heart failure. J. Appl. Physiol. 83(1): 323–329, 1997.—Abnormalities intrinsic to skeletal muscle are thought to contribute to decrements in exercise capacity found in individuals with chronic heart failure (CHF). Na+-K+-adenosinetriphosphatase (the Na+ pump) is essential for maintaining muscle excitability and contractility. Therefore, we investigated the possibility that the number and affinity of Na+ pumps in locomotor muscles of rats with CHF are decreased. Myocardial infarction (MI) was induced in 8 rats, and a sham operation was performed in 12 rats. The degree of CHF was assessed ∼180 days after surgery. Soleus and plantaris muscles were harvested, and Na+pumps were quantified by using a [3H]ouabain binding assay. At the time of muscle harvest, MI and sham-operated rats were similar in age (458 ± 54 vs. 447 ± 34 days old, respectively). Compared with their sham-operated counterparts, MI rats had a significant amount of heart failure, right ventricular-to-body weight ratio was greater (48%), and the presence of pulmonary congestion was suggested by an elevated lung-to-body weight ratio (29%). Left ventricular end-diastolic pressure was significantly increased in the MI rats (11 ± 1 mmHg) compared with the sham-operated controls (1 ± 1 mmHg). In addition, mean arterial blood pressure was lower in the MI rats compared with their control counterparts. [3H]ouabain binding sites were reduced 18% in soleus muscle (136 ± 12 vs. 175 ± 13 pmol/g wet wt, MI vs. sham, respectively) and 22% in plantaris muscle (119 ± 12 vs. 147 ± 8 pmol/g wet wt, MI vs. sham, respectively). The affinity of these [3H]ouabain binding sites was similar for the two groups. The relationship between the reduction in Na+ pump number and the reduced exercise capacity in individuals with CHF remains to be determined.


2002 ◽  
Vol 92 (6) ◽  
pp. 2326-2334 ◽  
Author(s):  
Timothy I. Musch ◽  
Swen Wolfram ◽  
K. Sue Hageman ◽  
Joel G. Pickar

Intrinsic skeletal muscle abnormalities decrease muscular endurance in chronic heart failure (CHF). In CHF patients, the number of skeletal muscle Na+-K+ pumps that have a high affinity for ouabain (i.e., the concentration of [3H]ouabain binding sites) is reduced, and this reduction is correlated with peak oxygen uptake. The present investigation determined whether the concentration of skeletal muscle [3H]ouabain binding sites found during CHF is related to 1) severity of the disease state, 2) muscle fiber type composition, and/or 3) endurance capacity. Four muscles were chosen that represented slow-twitch oxidative (SO), fast-twitch oxidative glycolytic (FOG), fast-twitch glycolytic (FG), and mixed fiber types. Measurements were obtained 8–10 wk postsurgery in 23 myocardial infarcted (MI) and 18 sham-operated control (sham) rats. Eighteen rats had moderate left ventricular (LV) dysfunction [LV end-diastolic pressure (LVEDP) < 20 mmHg], and five had severe LV dysfunction (LVEDP > 20 mmHg). Rats with severe LV dysfunction had significant pulmonary congestion and were likely in a chronic state of compensated congestive failure as indicated by an approximately twofold increase in both lung and right ventricle weight. Run time to fatigue and maximal oxygen uptake (V˙o 2 max) were significantly reduced (↓39 and ↓28%, respectively) in the rats with severe LV dysfunction and correlated with the magnitude of LV dysfunction as indicated by LVEDP (run time: r = 0.60, n = 21, P < 0.01 and V˙o 2 max: r = 0.93, n = 13, P < 0.01). In addition, run time to fatigue was significantly correlated withV˙o 2 max ( r = 0.87, n = 15, P < 0.01). The concentration of [3H]ouabain binding sites (Bmax) was significantly reduced (21–28%) in the three muscles comprised primarily of oxidative fibers [soleus: 259 ± 14 vs. 188 ± 17; plantaris: 295 ± 17 vs. 229 ± 18; red portion of gastrocnemius: 326 ± 17 vs. 260 ± 14 pmol/g wet tissue wt]. In addition, Bmax was significantly correlated withV˙o 2 max (soleus: r = 0.54, n = 15, P < 0.05; plantaris: r = 0.59, n = 15, P < 0.05; red portion of gastrocnemius: r = 0.65, n = 15, P < 0.01). These results suggest that downregulation of Na+-K+ pumps that possess a high affinity for ouabain in oxidative skeletal muscle may play an important role in the exercise intolerance that attends severe LV dysfunction in CHF.


1986 ◽  
Vol 860 (3) ◽  
pp. 708-712 ◽  
Author(s):  
Keld Kjeldsen ◽  
Erik A. Richter ◽  
Henrik Galbo ◽  
Gilles Lortie ◽  
Torben Clausen

Sign in / Sign up

Export Citation Format

Share Document