Two-dimensional high-resolution spectroscopy of quiet regions on the sun

1990 ◽  
Vol 170 (1-2) ◽  
pp. 117-119 ◽  
Author(s):  
D. Bonaccini ◽  
G. Cauzzi ◽  
A. Falchi ◽  
R. Falciani ◽  
L. A. Smaldone

2019 ◽  
Vol 28 (10) ◽  
pp. 1950125
Author(s):  
Slava G. Turyshev ◽  
Michael Shao ◽  
Viktor T. Toth

The remarkable optical properties of the solar gravitational lens (SGL) include major brightness amplification ([Formula: see text] on the optical axis, at a wavelength of [Formula: see text]m) and extreme angular resolution ([Formula: see text][Formula: see text]arcsec). A deep space mission equipped with a modest telescope and coronagraph, traveling to the focal area of the SGL that begins at [Formula: see text] astronomical units (AU) from the Sun, offers an opportunity for direct megapixel imaging and high-resolution spectroscopy of a habitable Earth-like exoplanet. We present a basic overview of this intriguing opportunity.



Nature ◽  
2007 ◽  
Vol 448 (7150) ◽  
pp. 176-179 ◽  
Author(s):  
O. E. Dial ◽  
R. C. Ashoori ◽  
L. N. Pfeiffer ◽  
K. W. West


2020 ◽  
Vol 637 ◽  
pp. A13 ◽  
Author(s):  
P. Muheki ◽  
E. W. Guenther ◽  
T. Mutabazi ◽  
E. Jurua

Context. Flares and coronal mass ejections (CMEs) are important for the evolution of the atmospheres of planets and their potential habitability, particularly for planets orbiting M stars at a distance <0.4 AU. Detections of CMEs on these stars have been sparse, and previous studies have therefore modelled their occurrence frequency by scaling up solar relations. However, because the topology and strength of the magnetic fields on M stars is different from that of the Sun, it is not obvious that this approach works well. Aims. We used a large number of high-resolution spectra to study flares, CMEs, and their dynamics of the active M dwarf star AD Leo. The results can then be used as reference for other M dwarfs. Methods. We obtained more than 2000 high-resolution spectra (R ~ 35 000) of the highly active M dwarf AD Leo, which is viewed nearly pole on. Using these data, we studied the behaviour of the spectral lines Hα, Hβ, and He I 5876 in detail and investigated asymmetric features that might be Doppler signatures of CMEs. Results. We detected numerous flares. The largest flare emitted 8.32 × 1031 erg in Hβ and 2.12 × 1032 erg in Hα. Although the spectral lines in this and other events showed a significant blue asymmetry, the velocities associated with it are far below the escape velocity. Conclusions. Although AD Leo shows a high level of flare activity, the number of CMEs is relatively low. It is thus not appropriate to use the same flare-to-CME relation for M dwarfs as for the Sun.





1995 ◽  
Vol 149 ◽  
pp. 193-194
Author(s):  
Reiner Volkmer

AbstractIn order to obtain information on the magnetic field on the sun in two spatial dimensions, a spectro-polarimeter of high spatial, spectral, and temporal resolution was built in the German Vacuum Tower Telescope (VTT) at the Observatorio del Teide/Tenerife. The two-dimensional spectrometer in the VTT, using a Universal Birefringent Filter (UBF) and a Fabry-Perot Interferometer (FPI) to obtain narrow-band nltergrams with a spectral resolution of the order of 3.105 (approx. 22 mÅ at CE5; at 6303 Å) and a spatial resolution of 0.2 arcsec/pixel (Bendlin et al. 1992, Bendlin and Volkmer 1993), was extended to work as a spectropolarimeter for measuring Stokes-I and Stokes-V profiles.



2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
AbdulKarim-Talaq Mohammad ◽  
Hasnah Osman ◽  
Guan-Yeow Yeap

The complete 1H and 13C NMR assignment of new 1,3-oxazepane-4,7-dione compounds has been obtained using one- and two-dimensional NMR techniques including COSY, HMQC, and HMBC experiments. The data deduced from this study show that the alkyl chain and the phenyl ring are in different planes compared to the oxazepine ring.



Author(s):  
X. Dumusque ◽  
M. Cretignier ◽  
D. Sosnowska ◽  
N. Buchschacher ◽  
C. Lovis ◽  
...  


Author(s):  
S. S. Panini ◽  
S. Narendranath ◽  
P. Sreekumar ◽  
K. Sankarasubramanian

Soft X-ray spectroscopy of the Sun is an important tool to understand the coronal dynamics and composition. The solar coronal X-ray spectrum below 1 keV is the least explored with high-resolution spectroscopy. Recent observations with Hinode XRT using coarse spectroscopy along with high-resolution imaging have shown that abundances in the coronae have variability associated with structures on the Sun. Disk averaged abundances with better spectral resolution spectrometers show time variability associated with flares. Both spatial and temporal variabilities seem to be related to changes in the magnetic field topology. Understanding such short term variabilities is necessary to model the underlying dynamics and mixing of material between different layers of the Sun. A Sensitive high-resolution spectrometer that covers the range in plasma temperatures and emission line complexes would uniquely reveal the entire evolution of flares. We are investigating a design of a multi-layer mirror-based X-ray spectrograph in the spectral range from 0.5 to 7 keV. The instrument operates in four asynchronous spectral channels operating one at a time. The multi-layer mirror placed at the focus of a Wolter type I telescope reflects a narrow band X-rays to the CCD which is placed at Nasmyth defocus. Converging X-rays from the front end optics helps to increase the spectral range of each channel while preserving the spectral resolution. This design is estimated to achieve a spectral resolution of 20 eV in the spectral range of 0.5–7 keV. With such high spectral resolution, we can resolve individual spectral features e.g., 6.7 keV Fe complex which can be used to diagnose high-temperature transient plasma during flares. The instrument design estimated performance and the science capabilities of this instrument will be discussed in detail in the paper.



1988 ◽  
Vol 102 ◽  
pp. 41
Author(s):  
E. Silver ◽  
C. Hailey ◽  
S. Labov ◽  
N. Madden ◽  
D. Landis ◽  
...  

The merits of microcalorimetry below 1°K for high resolution spectroscopy has become widely recognized on theoretical grounds. By combining the high efficiency, broadband spectral sensitivity of traditional photoelectric detectors with the high resolution capabilities characteristic of dispersive spectrometers, the microcalorimeter could potentially revolutionize spectroscopic measurements of astrophysical and laboratory plasmas. In actuality, however, the performance of prototype instruments has fallen short of theoretical predictions and practical detectors are still unavailable for use as laboratory and space-based instruments. These issues are currently being addressed by the new collaborative initiative between LLNL, LBL, U.C.I., U.C.B., and U.C.D.. Microcalorimeters of various types are being developed and tested at temperatures of 1.4, 0.3, and 0.1°K. These include monolithic devices made from NTD Germanium and composite configurations using sapphire substrates with temperature sensors fabricated from NTD Germanium, evaporative films of Germanium-Gold alloy, or material with superconducting transition edges. A new approache to low noise pulse counting electronics has been developed that allows the ultimate speed of the device to be determined solely by the detector thermal response and geometry. Our laboratory studies of the thermal and resistive properties of these and other candidate materials should enable us to characterize the pulse shape and subsequently predict the ultimate performance. We are building a compact adiabatic demagnetization refrigerator for conveniently reaching 0.1°K in the laboratory and for use in future satellite-borne missions. A description of this instrument together with results from our most recent experiments will be presented.



Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.



Sign in / Sign up

Export Citation Format

Share Document