scholarly journals Three years of HARPS-N high-resolution spectroscopy and precise radial velocity data for the Sun

Author(s):  
X. Dumusque ◽  
M. Cretignier ◽  
D. Sosnowska ◽  
N. Buchschacher ◽  
C. Lovis ◽  
...  
2010 ◽  
Vol 6 (S272) ◽  
pp. 400-401
Author(s):  
Valentina G. Klochkova ◽  
Eugene L. Chentsov ◽  
Anatoly S. Miroshnichenko

AbstractWe present the results of high-resolution spectroscopy of the extremely luminous star Cyg OB2 No. 12. We identified about 200 spectral features in the range 4552–7939 Å, including the interstellar Na I, K I lines and numerous very strong DIBs, along with the He I, C II, and Si II lines. An MK spectral type we derived for the object is B4.5±0.5 Ia+. Our analysis of the radial velocity data shows the presence of a gradient in the stellar atmosphere, caused by both atmospheric expansion and matter infall onto the star. The Hα emission displays broad Thompson wings, a slightly blue-shifted P Cyg type absorption component and a time-variable core absorption. We conclude that the wind is variable in time.


2008 ◽  
Vol 136 (3) ◽  
pp. 945-963 ◽  
Author(s):  
Jidong Gao ◽  
Ming Xue

Abstract A new efficient dual-resolution (DR) data assimilation algorithm is developed based on the ensemble Kalman filter (EnKF) method and tested using simulated radar radial velocity data for a supercell storm. Radar observations are assimilated on both high-resolution and lower-resolution grids using the EnKF algorithm with flow-dependent background error covariances estimated from the lower-resolution ensemble. It is shown that the flow-dependent and dynamically evolved background error covariances thus estimated are effective in producing quality analyses on the high-resolution grid. The DR method has the advantage of being able to significantly reduce the computational cost of the EnKF analysis. In the system, the lower-resolution ensemble provides the flow-dependent background error covariance, while the single-high-resolution forecast and analysis provides the benefit of higher resolution, which is important for resolving the internal structures of thunderstorms. The relative smoothness of the covariance obtained from the lower 4-km-resolution ensemble does not appear to significantly degrade the quality of analysis. This is because the cross covariance among different variables is of first-order importance for “retrieving” unobserved variables from the radar radial velocity data. For the DR analysis, an ensemble size of 40 appears to be a reasonable choice with the use of a 4-km horizontal resolution in the ensemble and a 1-km resolution in the high-resolution analysis. Several sensitivity tests show that the DR EnKF system is quite robust to different observation errors. A 4-km thinned data resolution is a compromise that is acceptable under the constraint of real-time applications. A data density of 8 km leads to a significant degradation in the analysis.


2020 ◽  
Vol 635 ◽  
pp. A206 ◽  
Author(s):  
N. Casasayas-Barris ◽  
E. Pallé ◽  
F. Yan ◽  
G. Chen ◽  
R. Luque ◽  
...  

HD 209458b was the first transiting planet discovered, and the first for which an atmosphere, in particular Na I, was detected. With time, it has become one of the most frequently studied planets, with a large diversity of atmospheric studies using low- and high-resolution spectroscopy. Here, we present transit spectroscopy observations of HD 209458b using the HARPS-N and CARMENES spectrographs. We fit the Rossiter-McLaughlin effect by combining radial velocity data from both instruments (nine transits in total), measuring a projected spin-orbit angle of − 1.6 ± 0.3 deg. We also present the analysis of high-resolution transmission spectroscopy around the Na I region at 590 nm, using a total of five transit observations. In contrast to previous studies where atmospheric Na I absorption is detected, we find that for all of the nights, whether individually or combined, the transmission spectra can be explained by the combination of the centre-to-limb variation and the Rossiter-McLaughlin effect. This is also observed in the time-evolution maps and transmission light curves, but at lower signal-to-noise ratio. Other strong lines such as Hα, Ca II IRT, the Mg I triplet region, and K I D1 are analysed, and are also consistent with the modelled effects, without considering any contribution from the exoplanet atmosphere. Thus, the transmission spectrum reveals no detectable Na I absorption in HD 209458b. We discuss how previous pioneering studies of this benchmark object may have overlooked these effects. While for some star–planet systems these effects are small, for other planetary atmospheres the results reported in the literature may require revision.


2021 ◽  
Vol 21 (11) ◽  
pp. 278
Author(s):  
Shuai Liu ◽  
Liang Wang ◽  
Jian-Rong Shi ◽  
Zhen-Yu Wu ◽  
Hong-Liang Yan ◽  
...  

Abstract Based on high resolution, high signal-to-noise (S/N) ratio spectra from Keck/HIRES, we have determined abundances of 20 elements for 18 Ba candidates. The parameter space of these stars is in the range of 4880 ≤ T eff ≤ 6050 K, 2.56 ≤ log g ≤ 4.53 dex and − 0.27 ≤ [Fe/H] ≤ 0.09 dex. It is found that four of them can be identified as Ba stars with [s/Fe] > 0.25 dex (s: Sr, Y, Zr, Ba, La, Ce and Nd), and three of them are newly discovered, which include two Ba giants (HD 16178 and HD 22233) and one Ba subgiant (HD 2946). Our results show that the abundances of α, odd and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, Mn, Ni and Cu) for our program stars are similar to those of the thin disk, while the distribution of [hs/ls] (hs: Ba, La, Ce and Nd, ls: Sr, Y and Zr) ratios of our Ba stars is similar to those of the known Ba objects. None of the four Ba stars show clear enhancement in carbon including the known CH subgiant HD 4395. It is found that three of the Ba stars present clear evidence of hosting stellar or sub-stellar companions from the radial velocity data.


1998 ◽  
Vol 11 (1) ◽  
pp. 574-574
Author(s):  
A.E. Gómez ◽  
S. Grenier ◽  
S. Udry ◽  
M. Haywood ◽  
V. Sabas ◽  
...  

Using Hipparcos parallaxes and proper motions together with radial velocity data and individual ages estimated from isochones, the velocity ellipsoid has been determined as a function of age. On the basis of the available kinematic data two different samples were considered: a first one (7789 stars) for which only tangential velocities were calculated and a second one containing 3104 stars with available U, V and W velocity components and total velocities ≤ 65 km.s-1. The main conclusions are: -Mixing is not complete at about 0.8-1 Gyr. -The shape of the velocity ellipsoid changes with time getting rounder from σu/σv/σ-w = 1/0.63/0.42 ± 0.04 at about 1 Gyr to1/0.7/0.62 ±0.04 at 4-5 Gyr. -The age-velocity-dispersion relation (from the sample with kinematical selection) rises to a maximum, thereafter remaining roughly constant; there is no dynamically significant evolution of the disk after about 4-5 Gyr. -Among the stars with solar metallicities and log(age) > 9.8 two groups are identified: one has typical thin disk characteristics, the other is older than 10 Gyr and lags the LSR at about 40 km.s-1 . -The variation of the tangential velocity with age(without selection on the tangential velocity) shows a discontinuity at about 10 Gyr, which may be attributed to stars typically of the thick disk populations for ages > 10 Gyr.


Author(s):  
Yuanbo Ran ◽  
Haijiang Wang ◽  
Li Tian ◽  
Jiang Wu ◽  
Xiaohong Li

AbstractPrecipitation clouds are visible aggregates of hydrometeor in the air that floating in the atmosphere after condensation, which can be divided into stratiform cloud and convective cloud. Different precipitation clouds often accompany different precipitation processes. Accurate identification of precipitation clouds is significant for the prediction of severe precipitation processes. Traditional identification methods mostly depend on the differences of radar reflectivity distribution morphology between stratiform and convective precipitation clouds in three-dimensional space. However, all of them have a common shortcoming that the radial velocity data detected by Doppler Weather Radar has not been applied to the identification of precipitation clouds because it is insensitive to the convective movement in the vertical direction. This paper proposes a new method for precipitation clouds identification based on deep learning algorithm, which is according the distribution morphology of multiple radar data. It mainly includes three parts, which are Constant Altitude Plan Position Indicator data (CAPPI) interpolation for radar reflectivity, Radial projection of the ground horizontal wind field by using radial velocity data, and the precipitation clouds identification based on Faster-RCNN. The testing result shows that the method proposed in this paper performs better than the traditional methods in terms of precision. Moreover, this method boasts great advantages in running time and adaptive ability.


2017 ◽  
Vol 13 (S334) ◽  
pp. 271-272
Author(s):  
Stéphane Udry ◽  
Maxime Marmier ◽  
Michel Mayor ◽  
Johannes Andersen ◽  
Birgitta Nordström

AbstractFrom 1977 to 1999, thousands of accurate radial velocities in both hemispheres were made on a large variety of programmes with the two CORAVEL scanners. The data base of ~350000 individual observations will now be made available to complement the Gaia data.


1987 ◽  
Vol 115 ◽  
pp. 340-341
Author(s):  
J. R. Walsh

HH39 is the group of Herbig-Haro (HH) objects associated with the young semi-stellar object R Monocerotis (R Mon) and the variable reflection nebula NGC 2261. An R CCD frame and a B prime focus plate of the region show a filament connecting NGC 2261 with HH39, confirming the association between R Mon and the HH objects. This filament is probably composed of emission material. The southern knot in HH39 has brightened over the last 20 years; its proper motion has been determined and is similar to that of the other knots. A total of 8 knots can be distinguished in HH39 surrounded by diffuse nebulosity. High resolution spectroscopy of the Hα and [N II] emission lines shows the spatial variation of the radial velocity structure over the largest knots (HH39 A and C). Distinct differences in excitation and velocity structure between the knots are apparent. The observations are compatible with the knots being high velocity ejecta from R Mon, decelerated by interaction with ambient material and with bow shocks on their front surfaces.


Sign in / Sign up

Export Citation Format

Share Document