Vibratory load of the turbine rotor blades of an aircraft gas turbine engine with dry friction dampers

1982 ◽  
Vol 14 (5) ◽  
pp. 664-668
Author(s):  
V. M. Kapralov ◽  
R. V. Skvortsov
Author(s):  
A. I. Kalinichenko

To meet the requirements for starting a mid-flight (GTE) of a reusable unmanned aerial vehicle (UAV), we developed an air starting system according to the scheme with the direct feed of compressed air to the turbine rotor blades. The system is an alternative to the commonly used powder or electrical starting systems of a small-size GTE of UAVs. The paper gives the results of experimental studies to determine the reliable starting feasibility and methods for determining the parameters required for starting the GTE of UAVs.


2016 ◽  
Vol 59 (1) ◽  
pp. 77-83
Author(s):  
G. G. Kulikov ◽  
V. A. Trushin ◽  
A. I. Abdulnagimov ◽  
A. A. Ganeev

Author(s):  
Stephen A. Long ◽  
Patrick A. Reiger ◽  
Michael W. Elliott ◽  
Stephen L. Edney ◽  
Frank Knabe ◽  
...  

For the purpose of assessing combustion effects in a small gas turbine engine, there was a requirement to evaluate the rotating temperature and dynamic characteristics of the power turbine rotor module. This assessment required measurements be taken within the engine, during operation up to maximum power, using rotor mounted thermocouples and strain gages. The acquisition of this data necessitated the use of a telemetry system that could be integrated into the existing engine architecture without affecting performance. Due to space constraints, housing of the telemetry module was limited to placement in a hot section. In order to tolerate the high temperature environment, a cooling system was developed as part of the integration effort to maintain telemetry module temperatures within the limit allowed by the electronics. Finite element thermal analysis was used to guide the design of the cooling system. This was to ensure that sufficient airflow was introduced and appropriately distributed to cool the telemetry cavity, and hence electronics, without affecting the performance of the engine. Presented herein is a discussion of the telemetry system, instrumentation design philosophy, cooling system design and verification, and sample of the results acquired through successful execution of the full engine test program.


Author(s):  
Zhongran Chi ◽  
Haiqing Liu ◽  
Shusheng Zang ◽  
Chengxiong Pan ◽  
Guangyun Jiao

Abstract The inhomogeneity of temperature in a turbine is related to the nonuniform heat release and air injections in combustors. In addition, it is influenced by the interactions between turbine cascades and coolant injections. Temperature inhomogeneity results in nonuniform flow temperature at turbine outlets, which is commonly measured by multiple thermal couples arranged in the azimuthal direction to monitor the operation of a gas turbine engine. Therefore, the investigation of temperature inhomogeneity transportation in a multistage gas turbine should help in detecting and quantifying the over-temperature or flameout of combustors using turbine exhaust temperature. Here the transportation of temperature inhomogeneity inside the four-stage turbine of a 300-MW gas turbine engine was numerically investigated using 3D CFD. The computational domain included all four stages of the turbine, consisting of more than 500 blades and vanes. Realistic components (N2, O2, CO2, and H2O) with variable heat capacities were considered for hot gas and cooling air. Coolants were added to the computational domain through more than 19,000 mass and momentum source terms. his was simple compared to realistic cooling structures. A URANS CFD run with over-temperature/flameout at 6 selected combustors out of 24 was carried out. The temperature distributions at rotor–stator interfaces and the turbine outlet were quantified and characterized by Fourier transformations in the time domain and space domain. It is found that the transport process from the hot-streaks/cold-streaks at the inlet to the outlet is relatively stable. The cold and hot fluid is redistributed in time and space due to the stator and rotor blades, in the region with a large parameter gradient at the inlet, strong unsteady temperature field and composition field appear. The distribution of the exhaust gas composition has a stronger correlation with the inlet temperature distribution and is less susceptible to interference.


2018 ◽  
Vol 61 (3) ◽  
pp. 420-424
Author(s):  
P. V. Bulat ◽  
M. P. Bulat ◽  
I. A. Volobuev ◽  
A. A. Levikhin

Sign in / Sign up

Export Citation Format

Share Document