Surface hardening of gray cast iron by induction fusion

1982 ◽  
Vol 24 (5) ◽  
pp. 368-370
Author(s):  
G. Sh. Kiriya ◽  
Yu. K. Bunina ◽  
L. Kh. Ivanova
2002 ◽  
Vol 11 (3) ◽  
pp. 294-300 ◽  
Author(s):  
Jong-Hyun Hwang ◽  
Yun-Sig Lee ◽  
Dae-Young Kim ◽  
Joong-Geun Youn

2018 ◽  
Vol 224 ◽  
pp. 03001
Author(s):  
Yulia Semenova ◽  
Yuri Nikitin ◽  
Andrey Rakhimyanov

Prospects of using the ultrasonic surface hardening of different materials as a way of achieving a simultaneous strengthening and finishing effects are presented. It is shown that this method is applicable for non-rigid and brittle parts. Thus, it allows processing gray cast iron. Therefore, the paper is devoted to establishing technologically significant parameters of ultrasonic surface hardening of particular gray cast iron. Research was conducted using mathematical modeling of the process. According to the calculations, the application of the modes revealed makes it possible to achieve the depth of the hardened layer up to 2 mm. Moreover, the parameters of the hardened layer, such as the diameter of a single imprint and the maximum intensity of deformation for specified processing conditions are calculated.


2020 ◽  
Vol 10 (9) ◽  
pp. 3049
Author(s):  
Bingxu Wang ◽  
Gary C. Barber ◽  
Rui Wang ◽  
Yuming Pan

The current research studied the effects of laser surface hardening treatment on the phase transformation and wear properties of gray cast irons heat treated by austempering or quench-tempering, respectively. Three austempering temperatures of 232 °C, 288 °C, and 343 °C with a constant holding duration of 120 min and three tempering temperatures of 316 °C, 399 °C, and 482 °C with a constant holding duration of 60 min were utilized to prepare austempered and quench-tempered gray cast iron specimens with equivalent macro-hardness values. A ball-on-flat reciprocating wear test configuration was used to investigate the wear resistance of austempered and quench-tempered gray cast iron specimens before and after applying laser surface-hardening treatment. The phase transformation, hardness, mass loss, and worn surfaces were evaluated. There were four zones in the matrix of the laser-hardened austempered gray cast iron. Zone 1 contained ledeburite without the presence of graphite flakes. Zone 2 contained martensite and had a high hardness, which was greater than 67 HRC. Zone 4 was the substrate containing the acicular ferrite and carbon-saturated austenite with a hardness of 41–27 HRC. In Zone 3, the substrate was tempered by the low thermal radiation. For the laser-hardened quench-tempered gray cast iron specimens, three zones were observed beneath the laser-hardened surface. Zone 1 also contained ledeburite, and Zone 2 was full martensite. Zone 3 was the substrate containing the tempered martensite. The tempered martensite became coarse with increasing tempering temperature due to the decomposition of the as-quenched martensite and precipitation of cementite particles. In the wear tests, the gray cast iron specimens without heat treatment had the highest wear loss. The wear performance was improved by applying quench-tempering heat treatment and further enhanced by applying austempering heat treatment. Austempered gray cast iron specimens had lower mass loss than the quench-tempered gray cast iron specimens, which was attributed to the high fracture toughness of acicular ferrite and stable austenite. After utilizing the laser surface hardening treatment, both austempered and quench-tempered gray cast iron specimens had decreased wear loss due to the high surface protection provided by the ledeburitic and martensitic structures with high hardness. In the worn surfaces, it was found that cracks were the dominant wear mechanism. The results of this work have significant value in the future applications of gray cast iron engineering components and provide valuable references for future studies on laser-hardened gray cast iron.


2019 ◽  
Vol 16 (2) ◽  
Author(s):  
Amin Suhadi ◽  
Seodihono

Production technology of metal casting industry in Indonesia needs to be improved, especially in the manufacturing of spare parts and box engine made of gray cast iron which has various wall thick such as dove tale construction. Microstructure of gray cast iron is influenced by cooling rate during casting, chemical composition and melting treatment process (inoculation). The part which has the thinnest thickness has the fastest cooling therefore, the grain boundary is smaller compared to other section. As a result this part has highest hardness and difficult to be machined. This research is conducted to solve this problem by modifying melting and solidification treatment process. The research starting from micro structure analysis, composition and mechanical properties tests on the product, and then conducting modification treatment through Taguchi method approach. Experimental results obtained show that the best level settings to control factors which affect to the uniformity of the microstructure and mechanical properties in gray cast iron is the addition of seed inoculation super ® 75, as much as 0.25% with the method of inoculation material entering into the Transfer Ladle.Teknologi produksi pada industri pengecoran di Indonesia masih membutuhkan perbaikan terutama dalam pembuatan komponen mesin perkakas dan peralatan pabrik yang terbuat dari besi tuang kelabu yang mempunyai variasi ketebalan yang besar seperti konstruksi ekor burung (dove tale). Pada pengecoran, struktur mikro dari besi tuang kelabu sangat dipengaruhi oleh kecepatan pendinginan, komposisi kimia dan proses perlakuan pada logam cair (inokulasi). Bagian yang mempunyai ukuran paling tipis mempunyai kecepatan pendinigan paling tinggi karena itu ukuran butirnya jauh lebih kecil dari bagian lain, akibatnya bagian ini mempunyai kekerasan lebih tinggi dan sulit dilakukan pengerjaan mesin. Penelitian ini bertujuan untuk memperbaiki hal ini yang terjadi pada dove taledengan cara memodifikasi proses perlakuan pada cairan besi dan proses pendinginan. Penelitian dimulai dari analisa struktur mikro, pengujian komposisi kimia, pengujian sifat mekanis pada produk kemudian dilakukan modifikasi menggunakan pendekatan metode statistik Taguchi. Hasil penelitian menunjukkan bahwa pengaturan terbaik yang dapat diperoleh untuk mendapatkan keseragaman struktur mikro dan sifat mekanis pada pengecoran besi tuang kelabu adalah penambahan seed inoculation super ® 75, sebesar 0.25% dengan metode pemasukan inokulasi kedalam Ladle pengangkut logam cair.Keywords: carbon, micro structure, hardness, inoculation


Alloy Digest ◽  
1973 ◽  
Vol 22 (2) ◽  

Abstract MEEHANITE GF-20 is a gray cast iron designed principally for high machinability and is used where strength is not an important factor. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: CI-39. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
2020 ◽  
Vol 69 (9) ◽  

Abstract ISO 185/JL/225 is an intermediate-tensile-strength gray cast iron that has a predominantly pearlitic matrix, and a tensile strength of 225–325 MPa (33-47 ksi), when determined on test pieces machined from separately cast, 30 mm (1.2 in.) diameter test bars. Compared with the lower strength gray cast iron grades, ISO 185/JL/225 contains lower carbon and silicon contents, while still maintaining excellent thermal conductivity, damping capacity, and machinability. This datasheet provides information on composition, physical properties, tensile properties, and compressive strength as well as fatigue. It also includes information on heat treating. Filing Code: CI-73. Producer or source: International Organization for Standardization (ISO).


Author(s):  
Eduard Riemschneider ◽  
Ilare Bordeasu ◽  
Ion Mitelea ◽  
Ion Dragos Utu ◽  
Corneliu Marius Crăciunescu

2003 ◽  
Vol 35 (6) ◽  
pp. 568-573 ◽  
Author(s):  
A. A. Lebedev ◽  
I. V. Makovetskii ◽  
V. P. Lamashevskii ◽  
N. L. Volchek

2020 ◽  
Vol 15 (4) ◽  
pp. 543-549
Author(s):  
Haydar Kepekci ◽  
Ergin Kosa ◽  
Cüneyt Ezgi ◽  
Ahmet Cihan

Abstract The brake system of an automobile is composed of disc brake and pad which are co-working components in braking and accelerating. In the braking period, due to friction between the surface of the disc and pad, the thermal heat is generated. It should be avoided to reach elevated temperatures in disc and pad. It is focused on different disc materials that are gray cast iron and carbon ceramics, whereas pad is made up of a composite material. In this study, the CFD model of the brake system is analyzed to get a realistic approach in the amount of transferred heat. The amount of produced heat can be affected by some parameters such as velocity and friction coefficient. The results show that surface temperature for carbon-ceramic disc material can change between 290 and 650 K according to the friction coefficient and velocity in transient mode. Also, if the disc material gray cast iron is selected, it can change between 295 and 500 K. It is claimed that the amount of dissipated heat depends on the different heat transfer coefficient of gray cast iron and carbon ceramics.


Sign in / Sign up

Export Citation Format

Share Document