A method of measuring the self-heating temperature of ferrite cores during high-frequency magnetic polarity reversal

1970 ◽  
Vol 9 (2) ◽  
pp. 151-152
Author(s):  
D. E. Bondarev ◽  
V. A. Yugov
1989 ◽  
Vol 26 (1) ◽  
pp. 192-198 ◽  
Author(s):  
W. J. Vreeken ◽  
R. W. Klassen ◽  
R. W. Barendregt

Davis Creek silt is the informal name for a previously unreported loess and its reworked detritus encountered at several locations to the south of the east and centre blocks of the Cypress Hills. This unit intervenes between a pediment with an estimated age of 10 Ma and Late Wisconsinan glacial deposits. Because the unit has reversed magnetization, it is older than 788 ka, the astronomical age of the Matuyama–Brunhes magnetic polarity reversal. The unit also contains an undated volcanic ash from the Pearlette ash family that could represent the Mesa Falls (1.27 Ma) or the Huckleberry Ridge (2.02 Ma) ash bed. Davis Creek silt overlies an oxidized weathering zone and contains large secondary carbonate nodules near its truncated top that were, in places, reworked into a lag deposit or stone line before accumulation of the glacial overburden. At one location Davis Creek silt is separated from this overburden by a unit of cryoturbated gravelly loam with remnants of a reddish-yellow paleosolic B horizon.


2011 ◽  
Vol 20 (5) ◽  
pp. 096369351102000 ◽  
Author(s):  
Andrzej Katunin

The present study is focused on the analytical modelling of the stationary self-heating caused by the hysteretic behaviour of the polymeric laminated circular and annular plates hinged on the boundary under axisymmetric transverse cyclic loading. The investigation was based on the complex parameters concept. The coupled thermoviscoelasticity problem was solved by substitution of the dissipation energy function to the heat transfer equation as a source function. The self-heating temperature distributions formulas were obtained by solving the heat transfer equation with appropriate thermal boundary conditions using trigonometric Fourier series. Numerous parametric analyses were presented. It was shown, that omitting the influence of the self-heating effect may results in the incorrect description of the behaviour of polymeric composites under cyclic loading.


2009 ◽  
Vol 398 (3) ◽  
pp. 1383-1391 ◽  
Author(s):  
R. Fares ◽  
J.-F. Donati ◽  
C. Moutou ◽  
D. Bohlender ◽  
C. Catala ◽  
...  

2012 ◽  
Vol 21 (3) ◽  
pp. 096369351202100 ◽  
Author(s):  
Andrzej Katunin ◽  
Marek Fidali

In the presented study the experimental results for the investigation of fatigue of polymeric composites subjected to intensive cyclic loading with presence of the self-heating effect were presented. Experiments were carried out on laboratory stand, which provides the synchronous measurement of loading force, displacements and temperature. It was observed, that the fatigue process during occurrence of the self-heating effect consists of three phases, which were analyzed and described. The characteristic self-heating temperature distributions and their evolution during the whole loading history were analyzed. The parametric analysis of influence of loading conditions on the self-heating temperature evolution and fatigue of polymeric composites was presented. Basing upon the measurement results the authors proposed empirical models, which give a qualitative evaluation of parametric dependencies.


2020 ◽  
Vol 117 (31) ◽  
pp. 18258-18263 ◽  
Author(s):  
Yael A. Engbers ◽  
Andrew J. Biggin ◽  
Richard K. Bono

Earth’s magnetic field is presently characterized by a large and growing anomaly in the South Atlantic Ocean. The question of whether this region of Earth’s surface is preferentially subject to enhanced geomagnetic variability on geological timescales has major implications for core dynamics, core−mantle interaction, and the possibility of an imminent magnetic polarity reversal. Here we present paleomagnetic data from Saint Helena, a volcanic island ideally suited for testing the hypothesis that geomagnetic field behavior is anomalous in the South Atlantic on timescales of millions of years. Our results, supported by positive baked contact and reversal tests, produce a mean direction approximating that expected from a geocentric axial dipole for the interval 8 to 11 million years ago, but with very large associated directional dispersion. These findings indicate that, on geological timescales, geomagnetic secular variation is persistently enhanced in the vicinity of Saint Helena. This, in turn, supports the South Atlantic as a locus of unusual geomagnetic behavior arising from core−mantle interaction, while also appearing to reduce the likelihood that the present-day regional anomaly is a precursor to a global polarity reversal.


2018 ◽  
Vol 18 (1) ◽  
pp. 5-12 ◽  
Author(s):  
A. Katunin

AbstractSince self-heating effect may significantly intensify structural degradation, it is essential to investigate its criticality, i.e. the temperature value at which fatigue fracture is initiated. In this paper, a new and sensitive criticality indicator based on evaluation of evolution of surface temperature distribution was proposed and experimentally validated. It was shown that comparing to other measurement techniques the presented approach allows for precise evaluation of the critical value of the self-heating temperature. The properly determined critical value may be helpful both during design and operation of elements made of polymers and polymeric composite.


Sign in / Sign up

Export Citation Format

Share Document