Effect of metal dispersion on CO hydrogenation over Pd/HZSM-5 catalysts

1995 ◽  
Vol 31 (4) ◽  
pp. 341-350 ◽  
Author(s):  
Jong-Ki Jeon ◽  
Son-Ki Ihm
1984 ◽  
Vol 13 (9) ◽  
pp. 1607-1610 ◽  
Author(s):  
Hironori Arakawa ◽  
Kazuhiko Takeuchi ◽  
Takehiko Matsuzaki ◽  
Yoshihiro Sugi

2021 ◽  
pp. 174751982098472
Author(s):  
Jun Yu ◽  
Ying Han ◽  
Guoqing Chen ◽  
Xiuzhen Xiao ◽  
Haifang Mao ◽  
...  

The effect of carbon nanotubes on the catalytic properties of Rh-Mn-Li/SiO2 catalysts was investigated for CO hydrogenation. The catalysts were comprehensively characterized by means of X-ray power diffraction, N2 sorption, transmission electron microscope, H2–temperature-programmed reduction, CO–temperature-programmed desorption, temperature-programmed surface reaction, and X-ray photoelectron spectroscopy. The results showed that an appropriate amount of carbon nanotubes can be attached to the surface of the SiO2 sphere and can improve the Rh dispersion. Moderate Rh-Mn interaction can be obtained by doping with the appropriate amount of carbon nanotubes, which promotes the formation of strongly adsorbed CO and facilitates the progress of CO insertion, resulting in the increase in the selectivity of C2+ oxygenate synthesis.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 88
Author(s):  
Diana García-Pérez ◽  
Maria Consuelo Alvarez-Galvan ◽  
Jose M. Campos-Martin ◽  
Jose L. G. Fierro

Catalysts based on zirconia- and alumina-supported tungsten oxides (15 wt % W) with a small loading of platinum (0.3 wt % Pt) were selected to study the influence of the reduction temperature and the nature of the support on the hydroisomerization of n-dodecane. The reduction temperature has a major influence on metal dispersion, which impacts the catalytic activity. In addition, alumina and zirconia supports show different catalytic properties (mainly acid site strength and surface area), which play an important role in the conversion. The NH3-TPD profiles indicate that the acidity in alumina-based catalysts is clearly higher than that in their zirconia counterparts; this acidity can be attributed to a stronger interaction of the WOx species with alumina. The PtW/Al catalyst was found to exhibit the best catalytic performance for the hydroisomerization of n-dodecane based on its higher acidity, which was ascribed to its larger surface area relative to that of its zirconia counterparts. The selectivity for different hydrocarbons (C7–10, C11 and i-C12) was very similar for all the catalysts studied, with branched C12 hydrocarbons being the main products obtained (~80%). The temperature of 350 °C was clearly the best reduction temperature for all the catalysts studied in a trickled-bed-mode reactor.


2021 ◽  
Author(s):  
Liam Howard-Fabretto ◽  
Timothy Gorey ◽  
Guangjing Li ◽  
Siriluck Tesana ◽  
Gregory F Metha ◽  
...  

Small Ru clusters are efficient catalysts for chemical reactions such as CO hydrogenation. In this study 3-atom Ru3 clusters were deposited onto radio frequency (RF)-deposited TiO2 which is an inexpensive,...


Author(s):  
Panpan Ji ◽  
Zheng Fan ◽  
Menglong Niu ◽  
Liuyi Pan ◽  
Genhui Jing ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 313
Author(s):  
Heidy Ramirez-Mendoza ◽  
Mafalda Valdez Lancinha Pereira ◽  
Tom Van Gerven ◽  
Cécile Lutz ◽  
Ignacio Julian

The activity and selectivity of Mo/ZSM-5, benchmarking catalyst for the non-oxidative dehydroaromatization of methane, strongly depend on the cluster size, spatial distribution, and chemical environment of the Mo-based active sites. This study discloses the use of an ultrasound-assisted ion-exchange (US-IE) technique as an alternative Mo/ZSM-5 synthesis procedure in order to promote metal dispersion along the zeolite framework. For this purpose, a plate transducer (91.8 kHz) is employed to transmit the ultrasonic irradiation (US) into the ion-exchange reactor. The physico-chemical properties and catalytic activity of samples prepared under the said irradiation procedure and traditional impregnation (IWI) method are critically evaluated. Characterization results suggest that US neither affects the crystalline structure nor the particle size of the parent zeolite. However, US-IE promotes molybdenum species dispersion, avoids clustering at the external fresh zeolite surface and enhances molybdate species anchoring to the zeolite framework with respect to IWI. Despite the improved metal dispersion, the catalytic activity between catalysts synthesized by US-IE and IWI is comparable. This suggests that the sole initial dispersion enhancement does not suffice to boost the catalyst productivity and further actions such ZSM-5 support and catalyst pre-conditioning are required. Nevertheless, the successful implementation of US-IE and the resulting metal dispersion enhancement pave the way toward the application of this technique to the synthesis of other dispersed catalysts and materials of interest.


Author(s):  
Phil Preikschas ◽  
Julia Bauer ◽  
Kristian Knemeyer ◽  
Raoul Naumann d'Alnoncourt ◽  
Ralph Krähnert ◽  
...  

The conversion of syngas (CO/H2) to ethanol (StE) is one promising example to generate a high-value fuel and key intermediate for various base chemicals, preferably from non-fossil carbon resources. Rh-based...


ACS Catalysis ◽  
2021 ◽  
pp. 5189-5201
Author(s):  
Max Schumann ◽  
Monia R. Nielsen ◽  
Thomas E. L. Smitshuysen ◽  
Thomas W. Hansen ◽  
Christian D. Damsgaard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document