Investigation of heat exchange in the water-spray cooling of high-temperature metal surfaces

1980 ◽  
Vol 39 (2) ◽  
pp. 900-905
Author(s):  
L. I. Urbanovich ◽  
V. A. Goryainov ◽  
V. V. Sevost'yanov ◽  
Yu. G. Boev ◽  
V. M. Niskovskikh ◽  
...  
1998 ◽  
Vol 69 (6) ◽  
pp. 240-246 ◽  
Author(s):  
Vigdis Olden ◽  
Miroslav Raudenský ◽  
Kristin Onsrud ◽  
Wolfgang Hummel

2001 ◽  
Author(s):  
J. Ward ◽  
M. de Oliveira ◽  
D. R. Garwood ◽  
R. A. Wallis

Abstract The desired mechanical properties of the nickel-based or titanium forgings used in gas turbines for aircraft and power generation applications can be controlled by varying the rate of cooling from the so-called solution temperature during an initial heat treatment process. The use of dilute air-water spray cooling of these forgings is a technique which can provide heat transfer rates lying between those associated with conventional oil quenching or convective air-cooling. Air assisted atomisation can result in fine sprays over a wide range of water flow rates and it has a further advantage in that the air “sweeps” the surface and hence helps to prevent the build up of deleterious vapour films at high surface temperatures. The paper presents experimental data for the heat transfer rates associated with the use of these sprays to cool surfaces from temperatures of approximately 800°C. Many forgings contain surface recesses, which can lead to build up or “pooling” of the water so that the effect of variations in surface geometry is also reported. Periodic interruption of the water flow is a technique which can be employed to provide additional control of the heat transfer rate, particularly at temperatures below 500°C so that data is also presented for pulsed sprays.


Author(s):  
I Ritchey ◽  
E H Fisher ◽  
G D Agnew

Aerodervative gas turbines intercooled by water spray injection systems have recently entered service. A calculation framework is presented which permits the effect of water spray injection for both intercooling and inlet chilling to be evaluated and compared with conventional cooling techniques for a range of cycles. The calculations are based on representative performance maps for compressors and turbines, focusing upon the actual performance benefits that can be realized from existing turbomachinery. The principal conclusions are that spray intercooling can give a greater power boost than conventional intercooling for a given compressor operating envelope spray inlet chilling can give performance benefits comparable with absorption chilling and intercooling is more attractive at ambient temperatures below 15°C, whereas inlet chilling is preferable at higher temperatures.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Jungho Lee ◽  
Sang Gun Lee ◽  
Jinsub Kim

The onset of nucleate boiling in water spray cooling on hot steel plate was investigated by a simultaneous boiling visualization and heat transfer measurement. The boiling phenomena were visualized with 4K video camera and the surface temperature of the hot steel plate was determined by solving 2-D inverse heat conduction during water spray cooling. The temperature was measured by a sampling rate of 10 data/sec. The hot steel plate was initially heated up to 900°C and the coolant temperature was kept at a constant temperature of 20°C. The spray nozzle with fullcone pattern was mounted with the three different heights (100, 200 and 300 mm). The more spray height was increased, the more scattered the spray pattern became, which could affect the partial spray intensity and overall cooling uniformity. The lower spray nozzle height of 100 mm shows the steep temperature gradient in inner zone. As the spray particles are more intense at inner zone which wets faster than outer zone. But the higher spray nozzle height of 300 mm, the temperature profile keeps constant within the 400 sec. After this time, the outer zone is wetted faster than inner zone. At the middle height of 200 mm, although the temperature gradient in inner zone is slightly higher than that in outer zone, the overall surface wetting is relatively uniform in the inner and outer zone. These results exhibit that the spray cooling uniformity can be controlled with optimized spray nozzle height. Furthermore the boiling visualization agrees well with the onset of nucleate boiling in surface temperature profiles.


Sign in / Sign up

Export Citation Format

Share Document